No matter what you may have heard, make no mistake: physics is not over in any sense of the word. As far as weve come in our attempts to make sense of the world and Universe around us and we have come impressively far its absolutely disingenuous to pretend that weve solved and understood the natural world around us in any sort of satisfactory sense. We have two theories that work incredibly well: in all the years weve been testing them, weve never found a single observation or made a single experimental measurement thats conflicted with either Einsteins General Relativity or with the Standard Models predictions from quantum field theory.
If you want to know how gravitation works or what its effects on any object in the Universe will be, General Relativity has yet to let us down. From tabletop experiments to atomic clocks to celestial mechanics to gravitational lensing the formation of the great cosmic web, its success rate is 100%. Similarly, for any particle physics experiment or interaction conceivable, whether mediated via the strong, weak, or electromagnetic force, the Standard Models predictions have always been found to agree with the results. In their own realms, General Relativity and the Standard Model can each lay claim to be the most successful physics theory of all-time.
But theres a huge fundamental problem at the heart of both of them: they simply dont work together. If you want your Universe to be consistent, this situation simply wont do. Heres the fundamental problem at the heart of physics in the 21st century.
Countless scientific tests of Einsteins General Theory of Relativity have been performed, subjecting the idea to some of the most stringent constraints ever obtained by humanity. Einsteins first solution was for the weak-field limit around a single mass, like the Sun; he applied these results to our Solar System with dramatic success. Very quickly, a handful of exact solutions were found thereafter.
On the one hand, General Relativity, our theory of gravity, was a radical concept when it first came out: so radical that it was attacked by many on both philosophical and physical grounds for many decades.
Travel the Universe with astrophysicist Ethan Siegel. Subscribers will get the newsletter every Saturday. All aboard!
Regardless of how anyone might have felt about the new picture that Einsteins greatest achievement, the general theory of relativity, brought along with it, the behavior of physical phenomena in the Universe doesnt lie. Based on a whole suite of experiments and observations, General Relativity has proven to be a remarkably successful description of the Universe, succeeding under every conceivable condition that weve been able to test, whereas no other alternative does.
The results of the 1919 Eddington expedition showed, conclusively, that the General Theory of Relativity described the bending of starlight around massive objects, overthrowing the Newtonian picture. This was the first observational confirmation of Einsteins theory of gravity.
What General Relativity tells us is that the matter-and-energy in the Universe specifically, the energy density, the pressure, the momentum density, and the shear stress present throughout spacetime determines the amount and type of spacetime curvature thats present in all four dimensions: the three spatial dimensions as well as the time dimension. As a result of this spacetime curvature, all entities that exist in this spacetime, including (but not limited to) all massive and massless particles, move not necessarily along straight lines, but rather along geodesics: the shortest paths between any two points defined by the curved space between them, rather than an (incorrectly) assumed flat space.
Where spatial curvature is large, the deviations from straight-line paths are large, and the rate at which time passes can dilate significantly as well. Experiments and observations in laboratories, in our Solar System, and on galactic and cosmic scales all bear this out in great agreement with General Relativitys predictions, lending further support to the theory.
Only this picture of the Universe, at least so far, works to describe gravitation. Space and time are treated as continuous, not discrete, entities, and this geometric construction is required to serve as the background spacetime in which all interactions, including gravitation, take place.
The particles and antiparticles of the Standard Model obey all sorts of conservation laws, but also display fundamental differences between fermionic particles and antiparticles and bosonic ones. While theres only one copy of the bosonic contents of the Standard Model, there are three generations of Standard Model fermions. Nobody knows why.
On the other hand, theres the Standard Model of particle physics. Originally formulated under the assumptions that neutrinos were massless entities, the Standard Model is based on quantum field theory, where there are:
The electromagnetic force is based on electric charges, and so all six of the quarks and the three charged leptons (electron, muon, and tau) all experience the electromagnetic force, whereas the massless photon mediates it.
The strong nuclear force is based on color charges, and only the six quarks possess them. There are eight massless gluons that mediate the strong force, and no other particles are involved in it.
The weak nuclear force, meanwhile, is based on weak hypercharge and weak isospin, and all of the fermions possess at least one of them. The weak interaction is mediated by the W-and-Z bosons, and the W bosons also possess electric charges, meaning they experience the electromagnetic force (and can exchange photons) as well.
The inherent width, or half the width of the peak in the above image when youre halfway to the crest of the peak, is measured to be 2.5 GeV: an inherent uncertainty of about +/- 3% of the total mass. The mass of the particle in question, the Z boson, is peaked at 91.187 GeV, but that mass is inherently uncertain by a significant amount owing to its excessively short lifetime. This result it remarkably consistent with Standard Model predictions.
Theres a rule in quantum physics that all identical quantum states are indistinguishable from one another, and that enables them to mix together. Quark mixing was expected and then confirmed, with the weak interaction determining various parameters of this mixing. Once we learned that neutrinos were massive, not massless as originally expected, we realized that the same type of mixing must occur for neutrinos, also determined by the weak interactions. This set of interactions the electromagnetic, weak, and strong nuclear forces, acting upon the particles that have the relevant and necessary charges describes everything that one could want to predict particle behavior under any imaginable conditions.
And the conditions weve tested them under are extraordinary. From cosmic ray experiments to radioactive decay experiments to solar experiments to high-energy physics experiments involving particle colliders, the Standard Models predictions have agreed with every single such experiment ever performed. Once the Higgs boson was discovered, it confirmed our picture that the electromagnetic and weak force were once unified at high energies into the electroweak force, which was the ultimate test of the Standard Model. In all of physics history, theres never been a result the Standard Model couldnt explain.
Today, Feynman diagrams are used in calculating every fundamental interaction spanning the strong, weak, and electromagnetic forces, including in high-energy and low-temperature/condensed conditions. The electromagnetic interactions, shown here, are all governed by a single force-carrying particle: the photon, but weak, strong, and Higgs couplings can also occur. These calculations are difficult to perform, but are still far more complicated in curved, rather than flat, space.
But theres a catch. All of the Standard Model calculations we perform are based on particles that exist in the Universe, which means they exist in spacetime. The calculations we typically perform are done so under the assumption that spacetime is flat: an assumption that we know is technically wrong, but one thats so useful (because calculations in curved spacetime are so much more difficult than they are in flat space) and such a good approximation to the conditions we find on Earth that we plow ahead and make this approximation anyway.
After all, this is one of the great methods we use in physics: we model our system in as simple a fashion as possible in order to capture all of the relevant effects that will determine the outcome of an experiment or measurement. Saying Im doing my high-energy physics calculations in flat spacetime rather than in curved spacetime doesnt give you an appreciably different answer except in the most extreme conditions.
But extreme conditions do exist in the Universe: in the spacetime around a black hole, for example. Under those conditions, we can determine that using a flat spacetime background is simply no good, and were compelled to take on the herculean task of performing our quantum field theory calculations in curved space.
Inside a black hole, the spacetime curvature is so large that light cannot escape, nor can particles, under any circumstances. Although we lack an understanding of what happens at the central singularities of black holes themselves, Einsteins General Relativity is sufficient for describing the curvature of space more than a few Planck lengths away from the singularity itself.
It might surprise you that, in principle, this isnt really all that difficult. All you have to do is replace the flat spacetime background you normally use for performing your calculations with the curved background as described by General Relativity. After all, if you know how your spacetime is curved, you can write down the equations for the background, and if you know what quanta/particles you have, you can write down the remaining terms describing the interactions between them in that spacetime. The rest, although its quite difficult in practice under most circumstances, is simply a matter of computational power.
You can describe, for example, how the quantum vacuum behaves inside and outside of a black holes event horizon. Because youre in a region where spacetime is more severely curved the closer you are to a black holes singularity, the quantum vacuum differs in a calculable way. The difference in what the vacuum state is in different regions of space particularly in the presence of a horizon, whether a cosmological or an event horizon leads to the production of radiation and particle-antiparticle pairs wherever quantum fields are present. This is the fundamental reason behind Hawking radiation: the reason that black holes, in a quantum Universe, are fundamentally unstable and will eventually decay.
Although no light can escape from inside a black holes event horizon, the curved space outside of it results in a difference between the vacuum state at different points near the event horizon, leading to the emission of radiation via quantum processes. This is where Hawking radiation comes from, and for the tiniest-mass black holes, Hawking radiation will lead to their complete decay in under a fraction-of-a-second. For even the largest mass black holes, survival beyond 10^103 years or so is impossible due to this exact process.
Thats as far as we can go, however, and that doesnt take us everywhere. Yes, we can make the Standard Model and General Relativity play nice in this fashion, but this only allows us to calculate how the fundamental forces work in strongly curved spacetimes that are sufficiently far away from singularities, like those at the centers of black holes or in theory at the very beginning of the Universe, assuming that such a beginning exists.
The maddening reason is that gravity affects all types of matter and energy. Everything is affected by gravitation, including, in theory, whatever types of particles are ultimately responsible for gravitation. Given that light, which is an electromagnetic wave, is made up of individual quanta in the form of photons, we assume that gravitational waves are made up of quanta in the form of gravitons, which we even know many of the particle properties of in the absence of a full quantum theory of gravitation.
But thats precisely what we need. Thats the missing piece: a quantum theory of gravity. Without it, we cannot understand or predict any of the quantum properties of gravity. And before you say, What if they dont exist? know that wouldnt paint a consistent picture of reality.
Results of a double-slit-experiment performed by Dr. Tonomura showing the build-up of an interference pattern of single electrons. If the path of which slit each electron passes through is measured, the interference pattern is destroyed, leading to two piles instead. The number of electrons in each panel are 11 (a), 200 (b), 6000 (c), 40000 (d), and 140000 (e).
For example, consider the most inherently quantum of all the quantum experiments that have ever been performed: the double slit experiment. If you send a single quantum particle through the apparatus and you observe which slit it goes through as it goes through it, the outcome is completely determined, as the particle behaves as though it
the slit you observed it to go through at every step of the way. If that particle was an electron, you could determine what its electric and magnetic fields were during its entire journey. You could also determine what its gravitational field was (or equivalently, what its effects on the curvature of spacetime were) at every moment as well.
But what if you dont observe which slit it goes through? Now the electrons position is indeterminate until it gets to the screen, and only then can you determine where it is. Along its journey, even after you make that critical measurement, its past trajectory is not fully determined. Because of the power of quantum field theory (for electromagnetism), we can determine what its electric field was. But because we dont have a quantum theory of gravitation, we cannot determine its gravitational field or effects. In this sense as well as at small, quantum fluctuation-rich scales or at singularities in which classical General Relativity gives only nonsense answers we dont fully understand gravitation.
Quantum gravity tries to combine Einsteins General theory of Relativity with quantum mechanics. Quantum corrections to classical gravity are visualized as loop diagrams, as the one shown here in white. Whether space (or time) itself is discrete or continuous is not yet decided, as is the question of whether gravity is quantized at all, or particles, as we know them today, are fundamental or not. But if we hope for a fundamental theory of everything, it must include quantized fields, which General Relativity does not do on its own.
This works both ways: because we dont understand gravitation at a quantum level, that means we dont quite understand the quantum vacuum itself. The quantum vacuum, or the properties of empty space, is something that can be measured in various ways. The Casimir effect, for instance, lets us measure the effect of the electromagnetic interaction through empty space under a variety of setups, simply by changing the configuration of conductors. The expansion of the Universe, if we measure it over all of our cosmic history, reveals to us the cumulative contributions of all of the forces to the zero-point energy of space: the quantum vacuum.
But can we quantify the quantum contributions of gravitation to the quantum vacuum in any way?
Not a chance. We dont understand how to calculate gravitys behavior at high energies, at small scales, near singularities, or when quantum particles exhibit their inherently quantum nature. Similarly, we dont understand how the quantum field that underpins gravity assuming there is one behaves at all under any circumstances. This is why attempts to understand gravity at a more fundamental level must not be abandoned, even if everything were doing now turns out to be wrong. Weve actually managed to identify the key problem that needs to be solved to push physics forward beyond its current limitations: a huge achievement that should never be underestimated. The only options are to keep trying or give up. Even if all of our attempts turn out to ultimately be in vain, its better than the alternative.
Excerpt from:
The biggest problem with gravity and quantum physics - Big Think
- Wolfram Physics Project Seeks Theory Of Everything; Is It Revelation Or Overstatement? - Hackaday [Last Updated On: May 6th, 2020] [Originally Added On: May 6th, 2020]
- Elon Musk and Grimes Named Their Baby X A-12, Which Must Mean SomethingRight? - Esquire [Last Updated On: May 6th, 2020] [Originally Added On: May 6th, 2020]
- Free Will Astrology - Week of May 7 | Advice & Fun | Bend - The Source Weekly [Last Updated On: May 6th, 2020] [Originally Added On: May 6th, 2020]
- Free Will Astrology: May 6, 2020 - River Cities Reader [Last Updated On: May 6th, 2020] [Originally Added On: May 6th, 2020]
- Is string theory worth it? - Space.com [Last Updated On: May 6th, 2020] [Originally Added On: May 6th, 2020]
- Finding the right quantum materials - MIT News [Last Updated On: May 6th, 2020] [Originally Added On: May 6th, 2020]
- Quantum Tunneling Effects, Solving the Schrodinger Equation Bottleneck Recognized as Best Papers by The Journal of Chemical Physics - PRNewswire [Last Updated On: May 6th, 2020] [Originally Added On: May 6th, 2020]
- What Is Quantum Mechanics? Quantum Physics Defined ... [Last Updated On: May 6th, 2020] [Originally Added On: May 6th, 2020]
- Quantum Physics Overview, Concepts, and History [Last Updated On: May 6th, 2020] [Originally Added On: May 6th, 2020]
- Tisca Chopra: This time has given me time to think about time - Daijiworld.com [Last Updated On: May 7th, 2020] [Originally Added On: May 7th, 2020]
- Iron-Based Material has the Ability to Power Small Devices - AZoNano [Last Updated On: May 7th, 2020] [Originally Added On: May 7th, 2020]
- How Einstein Failed to Find Flaws in the Copenhagen Interpretation - The Great Courses Daily News [Last Updated On: May 7th, 2020] [Originally Added On: May 7th, 2020]
- Raytheon Technologies Reports First Quarter 2020 Results; Greg Hayes Quoted - ExecutiveBiz [Last Updated On: May 7th, 2020] [Originally Added On: May 7th, 2020]
- Unified Field Theory: Einstein Failed, but What's the Future? - The Great Courses Daily News [Last Updated On: May 7th, 2020] [Originally Added On: May 7th, 2020]
- Einstein Vs. the New Generation of Quantum Theorists - The Great Courses Daily News [Last Updated On: May 7th, 2020] [Originally Added On: May 7th, 2020]
- Why Self-Awareness and Communication Are Key for Self-Taught Players and Luthiers - Premier Guitar [Last Updated On: May 10th, 2020] [Originally Added On: May 10th, 2020]
- Nine graduates head off to continue their higher educational pursuits - Nevada Today [Last Updated On: May 10th, 2020] [Originally Added On: May 10th, 2020]
- 'The Theory of Everything' by Wolfram Gets Criticized by Physicists - Interesting Engineering [Last Updated On: May 10th, 2020] [Originally Added On: May 10th, 2020]
- Cliff's Edge -- The Past Hypothesis - Adventist Review [Last Updated On: May 10th, 2020] [Originally Added On: May 10th, 2020]
- Researchers Have Found a New Way to Convert Waste Heat Into Electricity to Power Small Devices - SciTechDaily [Last Updated On: May 10th, 2020] [Originally Added On: May 10th, 2020]
- Quantum Computing Market New Technology Innovations, Advancements and Global Development Analysis 2020 to 2025 - Cole of Duty [Last Updated On: May 10th, 2020] [Originally Added On: May 10th, 2020]
- Physicist Brian Greene on learning to focus on the here and now - KCRW [Last Updated On: May 10th, 2020] [Originally Added On: May 10th, 2020]
- OK, WTF Are Virtual Particles and Do They Actually Exist? - VICE [Last Updated On: May 15th, 2020] [Originally Added On: May 15th, 2020]
- Is the Big Bang in crisis? | Astronomy.com - Astronomy Magazine [Last Updated On: May 15th, 2020] [Originally Added On: May 15th, 2020]
- Raytheon Technologies Board of Directors to Take Voluntary Compensation Reduction - PRNewswire [Last Updated On: May 15th, 2020] [Originally Added On: May 15th, 2020]
- What part of 'public' does PSC not get? - The Bozeman Daily Chronicle [Last Updated On: May 15th, 2020] [Originally Added On: May 15th, 2020]
- Exploring new tools in string theory - Space.com [Last Updated On: May 15th, 2020] [Originally Added On: May 15th, 2020]
- The Era of Anomalies - Physics [Last Updated On: May 15th, 2020] [Originally Added On: May 15th, 2020]
- Registration Open for Inaugural IEEE International Conference on Quantum Computing and Engineering (QCE20) - thepress.net [Last Updated On: May 15th, 2020] [Originally Added On: May 15th, 2020]
- Exploring the quantum field, from the sun's core to the Big Bang - MIT News [Last Updated On: May 15th, 2020] [Originally Added On: May 15th, 2020]
- The strange link between the human mind and quantum physics [Last Updated On: May 15th, 2020] [Originally Added On: May 15th, 2020]
- quantum mechanics | Definition, Development, & Equations ... [Last Updated On: May 15th, 2020] [Originally Added On: May 15th, 2020]
- Quantum Physics Introduction Made Simple for Beginners [Last Updated On: May 15th, 2020] [Originally Added On: May 15th, 2020]
- Company Hopes to Have Carbon Nanotube COVID-19 Detector Available in June - SciTechDaily [Last Updated On: May 23rd, 2020] [Originally Added On: May 23rd, 2020]
- The world is not as real as we think. - Patheos [Last Updated On: May 23rd, 2020] [Originally Added On: May 23rd, 2020]
- Armin Strom Discusses Resonance With PhD Of Quantum Physics And Watch Collector In An Easy-To-Understand Way (Video) - Quill & Pad [Last Updated On: May 23rd, 2020] [Originally Added On: May 23rd, 2020]
- Teaching the next generation of quantum scientists | Harvard John A. Paulson School of Engineering and Applied Sciences - Harvard School of... [Last Updated On: May 23rd, 2020] [Originally Added On: May 23rd, 2020]
- Nasa discovers parallel universe where time runs backwards? Know the truth - Business Standard [Last Updated On: May 23rd, 2020] [Originally Added On: May 23rd, 2020]
- Physicists Just Built The First Working Prototype Of A 'Quantum Radar' - ScienceAlert [Last Updated On: May 23rd, 2020] [Originally Added On: May 23rd, 2020]
- Next-Gen Laser Beams With Up to 10 Petawatts of Power Will Usher In New Era of Relativistic Plasmas Research - SciTechDaily [Last Updated On: May 26th, 2020] [Originally Added On: May 26th, 2020]
- What does the Tenet title mean? Quantum mechanics and Einsteins theory - Explica [Last Updated On: May 26th, 2020] [Originally Added On: May 26th, 2020]
- Looking up: UFO occupants and the legacy of language - Roswell Daily Record [Last Updated On: May 26th, 2020] [Originally Added On: May 26th, 2020]
- This is the light they have discovered and according to scientists it should not exist - Checkersaga [Last Updated On: June 2nd, 2020] [Originally Added On: June 2nd, 2020]
- MIT Student Probing Reality Through Physics, Philosophy and Writing - SciTechDaily [Last Updated On: June 2nd, 2020] [Originally Added On: June 2nd, 2020]
- David Baddiel: Kids have a better sense of humour than they used to' - The Guardian [Last Updated On: June 2nd, 2020] [Originally Added On: June 2nd, 2020]
- Some Information Regarding Medical Physics - - KUSI [Last Updated On: June 2nd, 2020] [Originally Added On: June 2nd, 2020]
- Francesca Vidotto: The Quantum Properties of Space-Time - JSTOR Daily [Last Updated On: June 2nd, 2020] [Originally Added On: June 2nd, 2020]
- These 8 Books Have the Power to Change Your Perspective on Life - Morocco World News [Last Updated On: June 8th, 2020] [Originally Added On: June 8th, 2020]
- Could Every Electron in the Universe Be the Same One? - Interesting Engineering [Last Updated On: June 8th, 2020] [Originally Added On: June 8th, 2020]
- Armijo: The absolute power of love | VailDaily.com - Vail Daily News [Last Updated On: June 8th, 2020] [Originally Added On: June 8th, 2020]
- Scientists predicted that the coronavirus death rate would fall over time, but instead it doubled. Here's why - Business Insider India [Last Updated On: June 13th, 2020] [Originally Added On: June 13th, 2020]
- Sussex Uni physicist creates the fifth state of matter whilst working from home - The Tab [Last Updated On: June 13th, 2020] [Originally Added On: June 13th, 2020]
- Beware of 'Theories of Everything' - Scientific American [Last Updated On: June 13th, 2020] [Originally Added On: June 13th, 2020]
- Duckworth on Education: The Feynman Technique - EMSWorld [Last Updated On: June 13th, 2020] [Originally Added On: June 13th, 2020]
- Scientists Discover Quantum Matter for the First Time in Space - Beebom [Last Updated On: June 14th, 2020] [Originally Added On: June 14th, 2020]
- Physicists May Have Solved Long-Standing Mystery of Matter and Antimatter - SciTechDaily [Last Updated On: June 14th, 2020] [Originally Added On: June 14th, 2020]
- Louis Broglie and the Idea of Wave-Particle Duality - Interesting Engineering [Last Updated On: June 14th, 2020] [Originally Added On: June 14th, 2020]
- Letter reveals the quirky side of Albert Einstein - Chile News | Breaking News, Views, Analysis - The Santiago Times [Last Updated On: June 14th, 2020] [Originally Added On: June 14th, 2020]
- Exploring the Quantum Field, From the Suns Core to the Big Bang at MIT - SciTechDaily [Last Updated On: June 14th, 2020] [Originally Added On: June 14th, 2020]
- 10 of the best non-fiction science books to read right now - New Scientist [Last Updated On: June 14th, 2020] [Originally Added On: June 14th, 2020]
- Quantum material research connecting physicists in Hong Kong, Beijing and Shanghai facilitates discovery of better materials that benefit our society... [Last Updated On: June 16th, 2020] [Originally Added On: June 16th, 2020]
- Flattening The Complexity Of Quantum Circuits - Asian Scientist Magazine [Last Updated On: June 16th, 2020] [Originally Added On: June 16th, 2020]
- Borrowing from robotics, scientists automate mapping of quantum systems - News - The University of Sydney [Last Updated On: June 16th, 2020] [Originally Added On: June 16th, 2020]
- Weird green glow spotted in atmosphere of Mars - Space.com [Last Updated On: June 16th, 2020] [Originally Added On: June 16th, 2020]
- Why Gravity Is Not Like the Other Forces - Quanta Magazine [Last Updated On: June 16th, 2020] [Originally Added On: June 16th, 2020]
- Cedar Hill grad pivots from science to law, determined to help others - The Dallas Morning News [Last Updated On: June 16th, 2020] [Originally Added On: June 16th, 2020]
- The stories a muon could tell - Symmetry magazine [Last Updated On: June 18th, 2020] [Originally Added On: June 18th, 2020]
- In the atmosphere of Mars, a green glow offers scientists hints for future visits - NBCNews.com [Last Updated On: June 18th, 2020] [Originally Added On: June 18th, 2020]
- Birdsong offers clues to the workings of short-term memory - AroundtheO [Last Updated On: June 18th, 2020] [Originally Added On: June 18th, 2020]
- Restructuring cybersecurity with the power of quantum - TechRadar [Last Updated On: June 18th, 2020] [Originally Added On: June 18th, 2020]
- Researchers Use Richard Feynman's Ideas to Develop a Working 'Theory of Everything' - Interesting Engineering [Last Updated On: June 18th, 2020] [Originally Added On: June 18th, 2020]
- Nano-motor of just 16 atoms runs at the boundary of quantum physics - New Atlas [Last Updated On: June 18th, 2020] [Originally Added On: June 18th, 2020]
- 'Everything was centered around Sara, he was lost': Abhishek Kapoor on Sushant Singh Rajput after 'Kedarnath' - DNA India [Last Updated On: June 21st, 2020] [Originally Added On: June 21st, 2020]
- Physicists have proposed a new theory for Bose-Einstein condensates - Tech Explorist [Last Updated On: June 21st, 2020] [Originally Added On: June 21st, 2020]
- 8.13 and 8.14: Physics Junior Lab - MIT Technology Review [Last Updated On: June 21st, 2020] [Originally Added On: June 21st, 2020]
- The Period of the Universe's Clock - Physics [Last Updated On: June 21st, 2020] [Originally Added On: June 21st, 2020]
- If Wormholes Are Actually Going to Work, They'll Need to Look Weird - Yahoo! Voices [Last Updated On: June 25th, 2020] [Originally Added On: June 25th, 2020]
- At Long Last: An Answer to the Mystery Surrounding Matter and Antimatter - SciTechDaily [Last Updated On: June 25th, 2020] [Originally Added On: June 25th, 2020]
- Lost and found in French translation - The Guardian [Last Updated On: June 25th, 2020] [Originally Added On: June 25th, 2020]
- Do we need a 'Quantum Generation'? | TheHill - The Hill [Last Updated On: June 25th, 2020] [Originally Added On: June 25th, 2020]