When we divide up matter into the smallest possible chunks that its made ofinto the stuff that can be divided or split no furtherthose indivisible things we arrive at are known as fundamental particles: the quanta that compose our Universe. But its a complicated story each time we ask the question: how does each individual quantum behave? Do they behave like particles? Or do they behave like waves?
The most puzzling fact about quantum mechanics is that the answer you get depends on how you look at the individual quanta that are part of the experiment. If you make certain classes of measurements and observations, they behave like particles; if you make other choices, they behave like waves. Whether and how you observe your own experiment really does change the outcome, and the double-slit experiment is the perfect way to show how.
This diagram, dating back to Thomas Youngs work in the early 1800s, is one of the oldest pictures that demonstrate both constructive and destructive interference as arising from wave sources originating at two points: A and B. This is a physically identical setup to a double slit experiment, even though it applies just as well to water waves propagated through a tank.
More than 200 years ago, the first double-slit experiment was performed by Thomas Young, who was investigating whether light behaved as a wave or a particle. Newton had famously claimed that it must be a particle, or corpuscle, and was able to explain a number of phenomena with this idea. Reflection, transmission, refraction, and any ray-based optical phenomena were perfectly consistent with Newtons view of how light should behave.
But other phenomena seemed to need waves to explain them: interference and diffraction in particular. When you passed light through a double slit, it behaved just the same way that water waves do, producing that familiar interference pattern. The light-and-dark spots that appeared on the screen behind the slit corresponded to constructive-and-destructive interference, indicating thatat least under the right circumstanceslight behaves as a wave does.
If you have two slits very close to one another, it stands to reason that any individual quantum of energy will go through either one slit or the other. Like many others, you might think that the reason light produces this interference pattern is because you have lots of different quanta of lightphotonsall going through the various slits together, and interfering with one another.
So you take a different set of quantum objects, like electrons, and fire them at the double slit. Sure, you get an interference pattern, but now you come up with a brilliant tweak: you fire the electrons one-at-a-time through the slits. With each new electron, you record a new data point for where it landed. After thousands upon thousands of electrons, you finally look at the pattern that emerges. And what do you see? Interference.
Electrons exhibit wave properties as well as particle properties, and can be used to construct images or probe particle sizes just as well as light can. Here, you can see the results of an experiment where electrons are fired one-at-a-time through a double-slit. Once enough electrons are fired, the interference pattern can clearly be seen.
Somehow, each electron must be interfering with itself, acting fundamentally like a wave.
For many decades, physicists have puzzled and argued over what this means must really be going on. Is the electron going through both slits at once, interfering with itself somehow? This seems counterintuitive and physically impossible, but we have a way to tell whether this is true or not: we can measure it.
So we set up the same experiment, but this time, we have a little light we shine across each of the two slits. When the electron goes through, the light is slightly perturbed, so we can flag which one of the two slits it passed through. With each electron that goes through, we get a signal coming from one of the two slits. At last, each electron has been counted, and we know which slit every one went through. And now, at the end, when we look at our screen, this is what we see.
If you measure which slit an electron goes through when performing a one-at-a-time double slit experiment, you dont get an interference pattern on the screen behind it. Instead, the electrons behave not as waves, but as classical particles. A similar effect can be seen for single-slit (at left) experiments as well.
That interference pattern? Its gone. Instead, its replaced by just two piles of electrons: the paths youd expect each electron to take if there were no interference at all.
Whats going on here? Its as though the electrons know whether youre watching them or not. The very act of observing this setupof asking which slit did each electron pass through?changes the outcome of the experiment.
If you measure which slit the quantum passes through, it behaves as though it passes through one and only one slit: it acts like a classical particle. If you dont measure which slit the quantum passes through, it behaves as a wave, acting like it passed through both slits simultaneously and producing an interference pattern.
Whats actually going on here? To find out, we have to perform more experiments.
By setting up a movable mask, you can choose to either block one or both slits for the double slit experiment, seeing what the outcomes are and how they change with the motion of the mask.
One experiment you can set up is to put a movable mask in front of both slits, while still firing electrons through them one-at-a-time. Practically,this has now been accomplishedin the following fashion:
How does the pattern change?
The results of the masked double-slit experiment. Note that when the first slit (P1), the second slit (P2), or both slits (P12) are open, the pattern you see is very different depending on whether one or two slits are available.
Exactly like you might expect:
Its as though if both paths are there as available options simultaneously, without restriction, you get interference and wave-like behavior. But if you only have one path available, or if either path is restricted somehow, you wont get interference and will get particle-like behavior.
So we go back to having both slits in the open position, and shining light across both of them as you pass electrons one-at-a-time through the double slits.
Double slit experiments performed with light produce interference patterns, as they would for any wave. The properties of different light colors is due to their differing wavelengths. The narrowly spaced bright-and-dark bands are the effect of the double slit; the more widely spaced dark and bright pattern is caused by the narrower single-slit effect. If you measure which slit the light (or any wave/particle quantum) passes through, this interference pattern gets destroyed.
If your light is both energetic (high energy per photon) and intense (a large number of total photons), you wont get an interference pattern at all. 100% of your electrons will be measured at the slits themselves, and youll get the results youd expect for classical particles alone.
But if you lower the energy-per-photon, youll discover that when you drop below a certain energy threshold, you dont interact with every electron. Some electrons will pass through the slits without registering which slit they went through, and youll start to get the interference pattern back as you lower your energy.
Same thing with intensity: as you lower it, the two pile pattern will slowly disappear, replaced with the interference pattern, while if you dial up the intensity, all traces of interference disappear.
And then, you get the brilliant idea to use photons to measure which slit each electron goes through, but to destroy that information before looking at the screen.
A quantum eraser experiment setup, where two entangled particles are separated and measured. No alterations of one particle at its destination affect the outcome of the other. You can combine principles like the quantum eraser with the double-slit experiment and see what happens if you keep or destroy, or look at or dont look at, the information you create by measuring what occurs at the slits themselves.
This last idea is known as aquantum eraser experiment, and it produces the fascinating result that if you destroy the information sufficiently, even after measuring which slit the particles went through, youll see an interference pattern on the screen.
Somehow, nature knows whether we have the information that marks which slit a quantum particle passed through. If the particle is marked in some fashion, you will not get an interference pattern when you look at the screen; if the particle is not marked (or was measured and then unmarked by destroying its information), you will get an interference pattern.
Weve even tried doing the experiment with quantum particles that have had their quantum state squeezed to be narrower than normal, and they not onlyexhibit this same quantum weirdness, but the interference pattern that comes outis also squeezed relative to the standard double slit pattern.
The results of unsqueezed (L, labeled CSS) versus squeezed (R, labeled squeezed CSS) quantum states. note the differences in the density-of-states plots, and that this translates into a physically squeezed double slit interference pattern.
It is extremely tempting, in light of all of this information, to ask what thousands upon thousands of scientists and physics students have asked upon learning it:what does it all mean about the nature of reality?
Travel the Universe with astrophysicist Ethan Siegel. Subscribers will get the newsletter every Saturday. All aboard!
Does it mean that nature is inherently non-deterministic?
Does it mean that what we keep or destroy today can affect the outcomes of events that should already be determined in the past?
That the observer plays a fundamental role in determining what is real?
A variety of quantum interpretations and their differing assignments of a variety of properties. Despite their differences, there are no experiments known that can tell these various interpretations apart from one another, although certain interpretations, like those with local, real, deterministic hidden variables, can be ruled out.
The answer, disconcertingly, is that we cannot conclude whether nature is deterministic or not, local or non-local, or whether the wavefunction is real. What the double slit experiment reveals is as complete a description of reality as youre ever going to get. To know the results of any experiment we can perform is as far as physics can take us. The rest is just an interpretation.
If your interpretation of quantum physics can successfully explain what the experiments reveal to us, it is valid; all the ones that cannot are invalid. Everything else is aesthetics, and while people are free to argue over their favorite interpretation, none can lay any more claim to being real than any other. But the heart of quantum physics can be found in these experimental results. We impose our preferences on the Universe at our own peril. The only path to understanding is to listen to what the Universe tells us about itself.
Go here to see the original:
Measuring reality really does affect what you observe - Big Think
- Wolfram Physics Project Seeks Theory Of Everything; Is It Revelation Or Overstatement? - Hackaday [Last Updated On: May 6th, 2020] [Originally Added On: May 6th, 2020]
- Elon Musk and Grimes Named Their Baby X A-12, Which Must Mean SomethingRight? - Esquire [Last Updated On: May 6th, 2020] [Originally Added On: May 6th, 2020]
- Free Will Astrology - Week of May 7 | Advice & Fun | Bend - The Source Weekly [Last Updated On: May 6th, 2020] [Originally Added On: May 6th, 2020]
- Free Will Astrology: May 6, 2020 - River Cities Reader [Last Updated On: May 6th, 2020] [Originally Added On: May 6th, 2020]
- Is string theory worth it? - Space.com [Last Updated On: May 6th, 2020] [Originally Added On: May 6th, 2020]
- Finding the right quantum materials - MIT News [Last Updated On: May 6th, 2020] [Originally Added On: May 6th, 2020]
- Quantum Tunneling Effects, Solving the Schrodinger Equation Bottleneck Recognized as Best Papers by The Journal of Chemical Physics - PRNewswire [Last Updated On: May 6th, 2020] [Originally Added On: May 6th, 2020]
- What Is Quantum Mechanics? Quantum Physics Defined ... [Last Updated On: May 6th, 2020] [Originally Added On: May 6th, 2020]
- Quantum Physics Overview, Concepts, and History [Last Updated On: May 6th, 2020] [Originally Added On: May 6th, 2020]
- Tisca Chopra: This time has given me time to think about time - Daijiworld.com [Last Updated On: May 7th, 2020] [Originally Added On: May 7th, 2020]
- Iron-Based Material has the Ability to Power Small Devices - AZoNano [Last Updated On: May 7th, 2020] [Originally Added On: May 7th, 2020]
- How Einstein Failed to Find Flaws in the Copenhagen Interpretation - The Great Courses Daily News [Last Updated On: May 7th, 2020] [Originally Added On: May 7th, 2020]
- Raytheon Technologies Reports First Quarter 2020 Results; Greg Hayes Quoted - ExecutiveBiz [Last Updated On: May 7th, 2020] [Originally Added On: May 7th, 2020]
- Unified Field Theory: Einstein Failed, but What's the Future? - The Great Courses Daily News [Last Updated On: May 7th, 2020] [Originally Added On: May 7th, 2020]
- Einstein Vs. the New Generation of Quantum Theorists - The Great Courses Daily News [Last Updated On: May 7th, 2020] [Originally Added On: May 7th, 2020]
- Why Self-Awareness and Communication Are Key for Self-Taught Players and Luthiers - Premier Guitar [Last Updated On: May 10th, 2020] [Originally Added On: May 10th, 2020]
- Nine graduates head off to continue their higher educational pursuits - Nevada Today [Last Updated On: May 10th, 2020] [Originally Added On: May 10th, 2020]
- 'The Theory of Everything' by Wolfram Gets Criticized by Physicists - Interesting Engineering [Last Updated On: May 10th, 2020] [Originally Added On: May 10th, 2020]
- Cliff's Edge -- The Past Hypothesis - Adventist Review [Last Updated On: May 10th, 2020] [Originally Added On: May 10th, 2020]
- Researchers Have Found a New Way to Convert Waste Heat Into Electricity to Power Small Devices - SciTechDaily [Last Updated On: May 10th, 2020] [Originally Added On: May 10th, 2020]
- Quantum Computing Market New Technology Innovations, Advancements and Global Development Analysis 2020 to 2025 - Cole of Duty [Last Updated On: May 10th, 2020] [Originally Added On: May 10th, 2020]
- Physicist Brian Greene on learning to focus on the here and now - KCRW [Last Updated On: May 10th, 2020] [Originally Added On: May 10th, 2020]
- OK, WTF Are Virtual Particles and Do They Actually Exist? - VICE [Last Updated On: May 15th, 2020] [Originally Added On: May 15th, 2020]
- Is the Big Bang in crisis? | Astronomy.com - Astronomy Magazine [Last Updated On: May 15th, 2020] [Originally Added On: May 15th, 2020]
- Raytheon Technologies Board of Directors to Take Voluntary Compensation Reduction - PRNewswire [Last Updated On: May 15th, 2020] [Originally Added On: May 15th, 2020]
- What part of 'public' does PSC not get? - The Bozeman Daily Chronicle [Last Updated On: May 15th, 2020] [Originally Added On: May 15th, 2020]
- Exploring new tools in string theory - Space.com [Last Updated On: May 15th, 2020] [Originally Added On: May 15th, 2020]
- The Era of Anomalies - Physics [Last Updated On: May 15th, 2020] [Originally Added On: May 15th, 2020]
- Registration Open for Inaugural IEEE International Conference on Quantum Computing and Engineering (QCE20) - thepress.net [Last Updated On: May 15th, 2020] [Originally Added On: May 15th, 2020]
- Exploring the quantum field, from the sun's core to the Big Bang - MIT News [Last Updated On: May 15th, 2020] [Originally Added On: May 15th, 2020]
- The strange link between the human mind and quantum physics [Last Updated On: May 15th, 2020] [Originally Added On: May 15th, 2020]
- quantum mechanics | Definition, Development, & Equations ... [Last Updated On: May 15th, 2020] [Originally Added On: May 15th, 2020]
- Quantum Physics Introduction Made Simple for Beginners [Last Updated On: May 15th, 2020] [Originally Added On: May 15th, 2020]
- Company Hopes to Have Carbon Nanotube COVID-19 Detector Available in June - SciTechDaily [Last Updated On: May 23rd, 2020] [Originally Added On: May 23rd, 2020]
- The world is not as real as we think. - Patheos [Last Updated On: May 23rd, 2020] [Originally Added On: May 23rd, 2020]
- Armin Strom Discusses Resonance With PhD Of Quantum Physics And Watch Collector In An Easy-To-Understand Way (Video) - Quill & Pad [Last Updated On: May 23rd, 2020] [Originally Added On: May 23rd, 2020]
- Teaching the next generation of quantum scientists | Harvard John A. Paulson School of Engineering and Applied Sciences - Harvard School of... [Last Updated On: May 23rd, 2020] [Originally Added On: May 23rd, 2020]
- Nasa discovers parallel universe where time runs backwards? Know the truth - Business Standard [Last Updated On: May 23rd, 2020] [Originally Added On: May 23rd, 2020]
- Physicists Just Built The First Working Prototype Of A 'Quantum Radar' - ScienceAlert [Last Updated On: May 23rd, 2020] [Originally Added On: May 23rd, 2020]
- Next-Gen Laser Beams With Up to 10 Petawatts of Power Will Usher In New Era of Relativistic Plasmas Research - SciTechDaily [Last Updated On: May 26th, 2020] [Originally Added On: May 26th, 2020]
- What does the Tenet title mean? Quantum mechanics and Einsteins theory - Explica [Last Updated On: May 26th, 2020] [Originally Added On: May 26th, 2020]
- Looking up: UFO occupants and the legacy of language - Roswell Daily Record [Last Updated On: May 26th, 2020] [Originally Added On: May 26th, 2020]
- This is the light they have discovered and according to scientists it should not exist - Checkersaga [Last Updated On: June 2nd, 2020] [Originally Added On: June 2nd, 2020]
- MIT Student Probing Reality Through Physics, Philosophy and Writing - SciTechDaily [Last Updated On: June 2nd, 2020] [Originally Added On: June 2nd, 2020]
- David Baddiel: Kids have a better sense of humour than they used to' - The Guardian [Last Updated On: June 2nd, 2020] [Originally Added On: June 2nd, 2020]
- Some Information Regarding Medical Physics - - KUSI [Last Updated On: June 2nd, 2020] [Originally Added On: June 2nd, 2020]
- Francesca Vidotto: The Quantum Properties of Space-Time - JSTOR Daily [Last Updated On: June 2nd, 2020] [Originally Added On: June 2nd, 2020]
- These 8 Books Have the Power to Change Your Perspective on Life - Morocco World News [Last Updated On: June 8th, 2020] [Originally Added On: June 8th, 2020]
- Could Every Electron in the Universe Be the Same One? - Interesting Engineering [Last Updated On: June 8th, 2020] [Originally Added On: June 8th, 2020]
- Armijo: The absolute power of love | VailDaily.com - Vail Daily News [Last Updated On: June 8th, 2020] [Originally Added On: June 8th, 2020]
- Scientists predicted that the coronavirus death rate would fall over time, but instead it doubled. Here's why - Business Insider India [Last Updated On: June 13th, 2020] [Originally Added On: June 13th, 2020]
- Sussex Uni physicist creates the fifth state of matter whilst working from home - The Tab [Last Updated On: June 13th, 2020] [Originally Added On: June 13th, 2020]
- Beware of 'Theories of Everything' - Scientific American [Last Updated On: June 13th, 2020] [Originally Added On: June 13th, 2020]
- Duckworth on Education: The Feynman Technique - EMSWorld [Last Updated On: June 13th, 2020] [Originally Added On: June 13th, 2020]
- Scientists Discover Quantum Matter for the First Time in Space - Beebom [Last Updated On: June 14th, 2020] [Originally Added On: June 14th, 2020]
- Physicists May Have Solved Long-Standing Mystery of Matter and Antimatter - SciTechDaily [Last Updated On: June 14th, 2020] [Originally Added On: June 14th, 2020]
- Louis Broglie and the Idea of Wave-Particle Duality - Interesting Engineering [Last Updated On: June 14th, 2020] [Originally Added On: June 14th, 2020]
- Letter reveals the quirky side of Albert Einstein - Chile News | Breaking News, Views, Analysis - The Santiago Times [Last Updated On: June 14th, 2020] [Originally Added On: June 14th, 2020]
- Exploring the Quantum Field, From the Suns Core to the Big Bang at MIT - SciTechDaily [Last Updated On: June 14th, 2020] [Originally Added On: June 14th, 2020]
- 10 of the best non-fiction science books to read right now - New Scientist [Last Updated On: June 14th, 2020] [Originally Added On: June 14th, 2020]
- Quantum material research connecting physicists in Hong Kong, Beijing and Shanghai facilitates discovery of better materials that benefit our society... [Last Updated On: June 16th, 2020] [Originally Added On: June 16th, 2020]
- Flattening The Complexity Of Quantum Circuits - Asian Scientist Magazine [Last Updated On: June 16th, 2020] [Originally Added On: June 16th, 2020]
- Borrowing from robotics, scientists automate mapping of quantum systems - News - The University of Sydney [Last Updated On: June 16th, 2020] [Originally Added On: June 16th, 2020]
- Weird green glow spotted in atmosphere of Mars - Space.com [Last Updated On: June 16th, 2020] [Originally Added On: June 16th, 2020]
- Why Gravity Is Not Like the Other Forces - Quanta Magazine [Last Updated On: June 16th, 2020] [Originally Added On: June 16th, 2020]
- Cedar Hill grad pivots from science to law, determined to help others - The Dallas Morning News [Last Updated On: June 16th, 2020] [Originally Added On: June 16th, 2020]
- The stories a muon could tell - Symmetry magazine [Last Updated On: June 18th, 2020] [Originally Added On: June 18th, 2020]
- In the atmosphere of Mars, a green glow offers scientists hints for future visits - NBCNews.com [Last Updated On: June 18th, 2020] [Originally Added On: June 18th, 2020]
- Birdsong offers clues to the workings of short-term memory - AroundtheO [Last Updated On: June 18th, 2020] [Originally Added On: June 18th, 2020]
- Restructuring cybersecurity with the power of quantum - TechRadar [Last Updated On: June 18th, 2020] [Originally Added On: June 18th, 2020]
- Researchers Use Richard Feynman's Ideas to Develop a Working 'Theory of Everything' - Interesting Engineering [Last Updated On: June 18th, 2020] [Originally Added On: June 18th, 2020]
- Nano-motor of just 16 atoms runs at the boundary of quantum physics - New Atlas [Last Updated On: June 18th, 2020] [Originally Added On: June 18th, 2020]
- 'Everything was centered around Sara, he was lost': Abhishek Kapoor on Sushant Singh Rajput after 'Kedarnath' - DNA India [Last Updated On: June 21st, 2020] [Originally Added On: June 21st, 2020]
- Physicists have proposed a new theory for Bose-Einstein condensates - Tech Explorist [Last Updated On: June 21st, 2020] [Originally Added On: June 21st, 2020]
- 8.13 and 8.14: Physics Junior Lab - MIT Technology Review [Last Updated On: June 21st, 2020] [Originally Added On: June 21st, 2020]
- The Period of the Universe's Clock - Physics [Last Updated On: June 21st, 2020] [Originally Added On: June 21st, 2020]
- If Wormholes Are Actually Going to Work, They'll Need to Look Weird - Yahoo! Voices [Last Updated On: June 25th, 2020] [Originally Added On: June 25th, 2020]
- At Long Last: An Answer to the Mystery Surrounding Matter and Antimatter - SciTechDaily [Last Updated On: June 25th, 2020] [Originally Added On: June 25th, 2020]
- Lost and found in French translation - The Guardian [Last Updated On: June 25th, 2020] [Originally Added On: June 25th, 2020]
- Do we need a 'Quantum Generation'? | TheHill - The Hill [Last Updated On: June 25th, 2020] [Originally Added On: June 25th, 2020]