Hopes are high that quantum theory could yield revolutionary applications. Physicist Jasmin Meinecke is working on the physical foundations of particle systems and studying the central phenomenon of entanglement, which is still a mystery to science.
Its not long into the conversation with Jasmin Meinecke that the magic word comes up: entanglement. Without it, nothing seems possible in the quantum world. It is a mysterious connection between things like photons or atoms, Meinecke explains. It means that these particles cannot be regarded as separate, even if they are far apart. Albert Einstein once called this invisible force spooky action at a distance. To this day, it is still not really understood.
Jasmin Meinecke is interested in such strange phenomena. She wants to learn more about a world that existed mainly only in theory for decades. Partly because it is so difficult to observe. Quantum theory is considered one of the most powerful physical theories of the 20th century. Although the finer details of many of its peculiar features remain unknown and still puzzle scientists to this day, there has recently been a great deal of interest around potential applications: from ultra-powerful quantum computers that are superior to todays computers, to communication encrypted with quantum cryptography making it tap-proof, to super-precise quantum sensors that could enable completely new kinds of measuring instruments to become reality. The current euphoria is driven by the fascinating possibilities offered by the quantum world itself: The theory promises dramatic improvements over the classical equipment we know and use today. Right now were learning more about what you can actually do with entangled particles, says Meinecke.
Entanglemement in a waveguideJasmin Meinecke in her laboratory in Garching.
Christoph Hohmann / LMURight now were learning more about what you can actually do with entangled particles.Dr. Jasmin MeineckeThe young physicist is one of many scientists to feel torn between the conflicting priorities of ambitious basic research and the great hopes for practical applications in the near future in areas like quantum computing. Meinecke, who heads a junior research group at the Max Planck Institute of Quantum Optics (MPQ) in Garching, is keen to conduct basic research, and so she is studying photons light particles in that context. Yet at the same time, she also wants to keep an eye on possible later applications, for instance by understanding how quantum systems can be used to measure the physical and chemical properties of matter.
Jasmin Meinecke completed her doctorate in Bristol in 2015 before moving to LMU Munich. She is also one of the researchers in the cluster of excellence MCQST (the Munich Center for Quantum Science and Technology), and in January 2020 she was awarded a START Fellowship. This is a program designed to enable excellent postdocs to set up their own project within two years and receive 300,000 euros in funding for it. Meinecke is currently working in LMU physicist Harald Weinfurters group, where she is using this funding to study open quantum systems, which are systems that interact with their environment something that scientists normally try to avoid at all costs. That is because such systems are very sensitive and are quickly disturbed by external influences all it takes is a change in temperature or a vibration.
EnlargeComparatively simple experimental setup Christoph Hohmann / LMU
Wave patterns in glassTo conduct her experiments, Meinecke uses photons that she observes under controlled conditions in integrated waveguides. Waveguides are small, unremarkable-looking glass plates with a kind of pattern inscribed inside them; the patterns are predetermined pathways for the light particles to travel along. Various entangled photons move towards and away from each other along these pathways.
Meinecke has sketched such wave patterns in her lab book and on whiteboards in the lab: curved paths, pretty to look at. Located inside the glass, they are not visible from the outside. The aim of these experiments is for the researcher to begin to understand, for example, how the quantum system and its environment exchange information and how that affects the quantum properties within it. Im fascinated by how and when quantum properties like coherence or entanglement are lost, says Meinecke. Quantum properties dont just suddenly disappear. The question is, where does the information go?
Quantum properties dont just suddenly disappear. The question is, where does the information go?Jasmin MeineckeSetting the pace about the impending quantum revolutionRead moreFor some years now, researchers have had increasing success with comparatively simple experiments like these as a way to better understand some of the concepts of quantum mechanics, such as superposition and entanglement, and be able to use them in technological applications. Entanglement is not just one of the most important properties of quantum particles, it is also the central resource for promising quantum technologies.
Meineckes field, experimental quantum optics, is ultimately based on the ability of scientists to control light, matter, and how they interact to an ever better degree. Its a field in which the Munich cluster of excellence brings together a huge amount of expertise and offers broad-ranging opportunities for cooperation. Meinecke chose photons as an experimental platform partly, she says, because light particles are easy to control, easier than solid-state systems with atoms, which are often very sensitive to their environment and in many cases can only serve as a platform for experiments at extremely low temperatures close to absolute zero. Added to that, photons have many properties that will be needed for future applications. For example, they can be readily transmitted in fiber optic cables like those used in telecommunications, and they are also easy to generate.
Several of the properties of photons can in principle be used for entanglement: the polarization of the light particles, the color of the light (the wavelength, in other words), the energy, the spin. Part of the reason why Meinecke is so excited about the possibilities offered by photons is because, unlike her colleagues who work with ultracold atoms, her experiments can be realized in a small space and she is able to take advantage of advances in the miniaturization of optical components.
The secret life of photonsThe setups in her lab are, in fact, astonishingly simple compared to other quantum experiments. A laser, a crystal, a small glass plate, and a little bit of electronics to analyze the experiments. All of it fits into a space the size of a kitchen table. The laser beams its light through a fiber optic cable into a nonlinear crystal, in which the lasers light particles can be used to generate photon pairs that are entangled. Whether an entangled pair is created from a photon coming out of the laser is pure chance.
Thats the mysterious bit about the experiment. It is a process that has only a certain probability of working. Once the particles have become entangled, thats when things get exciting for the physicist. The particles can then move along different paths through the waveguides. But what do they really do? Which pathway do they choose? Do they remain entangled? These seemingly simple questions transport you deep into the jungle of the quantum world. Meinecke has a more fundamental way of putting all these questions: What actually happens to the particles when they are not being observed?
For the LMU physicist, this is not just a philosophical question. Observation is an important thing in the quantum world. Because on the one hand, you dont know anything about whats happening in the waveguide until you observe the particles. And on the other hand, the entanglement between the photons is usually lost very suddenly if you only measure one state of a photon, such as its energy.
The peculiarities of the quantum walkSo what can be done? Were working on weak measurement too, says Meinecke. That means measuring without completely destroying the entanglement. Many research groups are interested in these same topics: Fellow scientists at the MPQ recently developed a method for detecting the entanglement of two distant atomic qubits, the quantum stores of information.
The scientists findings are not always easy for laypeople to grasp. A conversation with Jasmin Meinecke is like taking a high-speed ride through many exotic topics around quantum physics. She talks about Bell states and the peculiarities of the quantum walk, a kind of random walk that particles do, and of course the integrated waveguides that can be used for a wide variety of applications thanks to the complex structures inside the glass plates. They can now provide the level of stability and miniaturization we need to build larger experimental arrays, says Meinecke.
High-precision work Christoph Hohmann / LMUQubits for quantum computersIntegrated waveguides are an ideal tool for exploring fundamental questions of quantum physics. This is another reason why Meinecke is now keen to test the possibilities of integrated waveguide structures as quantum simulators in several further series of experiments. She says that entangled photons make a good study platform precisely because quantum systems are sensitive to the tiniest of disturbances in the environment. And that is what Meinecke wants to develop measurement techniques for.
She evidently prefers the small experiments to experiments using large-scale lasers, such as those still set up from years past in the Laboratory for Multiphoton Physics in Garching. One of these lasers, a powerful, high-performance machine, has been dubbed Tsunami. Fitted with much more complex attachments, it can be used to generate up to six entangled photons; only a few laboratories are capable of generating more entangled pairs. The current record is twelve. The hope here is that these could be used as qubits for quantum computers. But the effort is immense, especially considering that useful applications would require many times more photons. China still has research groups that keep reporting new records with more and more entangled particles, she says. This is not for her: The amount of resources and lab time it consumes is enormous. And it doesnt tell me anything more about physics, she says. A scientist at a university needs to be generating more fundamental insights anyway.
Despite all the current interest in areas like quantum computing, the researcher tries to keep her focus on the fundamentals. Quantum simulators and perhaps, later, quantum computers are not just faster computers that can solve problems like how to optimize delivery routes in logistics or work out the structure and effect of new molecules, says Meinecke. Its not just a matter of switching over from something like diesel engines to electric powertrains. Its a long road. Its quite simply something totally different, a new way of computing and understanding the world.
The rest is here:
LMU: Tandem actions in the particle world - India Education Diary
- Wolfram Physics Project Seeks Theory Of Everything; Is It Revelation Or Overstatement? - Hackaday [Last Updated On: May 6th, 2020] [Originally Added On: May 6th, 2020]
- Elon Musk and Grimes Named Their Baby X A-12, Which Must Mean SomethingRight? - Esquire [Last Updated On: May 6th, 2020] [Originally Added On: May 6th, 2020]
- Free Will Astrology - Week of May 7 | Advice & Fun | Bend - The Source Weekly [Last Updated On: May 6th, 2020] [Originally Added On: May 6th, 2020]
- Free Will Astrology: May 6, 2020 - River Cities Reader [Last Updated On: May 6th, 2020] [Originally Added On: May 6th, 2020]
- Is string theory worth it? - Space.com [Last Updated On: May 6th, 2020] [Originally Added On: May 6th, 2020]
- Finding the right quantum materials - MIT News [Last Updated On: May 6th, 2020] [Originally Added On: May 6th, 2020]
- Quantum Tunneling Effects, Solving the Schrodinger Equation Bottleneck Recognized as Best Papers by The Journal of Chemical Physics - PRNewswire [Last Updated On: May 6th, 2020] [Originally Added On: May 6th, 2020]
- What Is Quantum Mechanics? Quantum Physics Defined ... [Last Updated On: May 6th, 2020] [Originally Added On: May 6th, 2020]
- Quantum Physics Overview, Concepts, and History [Last Updated On: May 6th, 2020] [Originally Added On: May 6th, 2020]
- Tisca Chopra: This time has given me time to think about time - Daijiworld.com [Last Updated On: May 7th, 2020] [Originally Added On: May 7th, 2020]
- Iron-Based Material has the Ability to Power Small Devices - AZoNano [Last Updated On: May 7th, 2020] [Originally Added On: May 7th, 2020]
- How Einstein Failed to Find Flaws in the Copenhagen Interpretation - The Great Courses Daily News [Last Updated On: May 7th, 2020] [Originally Added On: May 7th, 2020]
- Raytheon Technologies Reports First Quarter 2020 Results; Greg Hayes Quoted - ExecutiveBiz [Last Updated On: May 7th, 2020] [Originally Added On: May 7th, 2020]
- Unified Field Theory: Einstein Failed, but What's the Future? - The Great Courses Daily News [Last Updated On: May 7th, 2020] [Originally Added On: May 7th, 2020]
- Einstein Vs. the New Generation of Quantum Theorists - The Great Courses Daily News [Last Updated On: May 7th, 2020] [Originally Added On: May 7th, 2020]
- Why Self-Awareness and Communication Are Key for Self-Taught Players and Luthiers - Premier Guitar [Last Updated On: May 10th, 2020] [Originally Added On: May 10th, 2020]
- Nine graduates head off to continue their higher educational pursuits - Nevada Today [Last Updated On: May 10th, 2020] [Originally Added On: May 10th, 2020]
- 'The Theory of Everything' by Wolfram Gets Criticized by Physicists - Interesting Engineering [Last Updated On: May 10th, 2020] [Originally Added On: May 10th, 2020]
- Cliff's Edge -- The Past Hypothesis - Adventist Review [Last Updated On: May 10th, 2020] [Originally Added On: May 10th, 2020]
- Researchers Have Found a New Way to Convert Waste Heat Into Electricity to Power Small Devices - SciTechDaily [Last Updated On: May 10th, 2020] [Originally Added On: May 10th, 2020]
- Quantum Computing Market New Technology Innovations, Advancements and Global Development Analysis 2020 to 2025 - Cole of Duty [Last Updated On: May 10th, 2020] [Originally Added On: May 10th, 2020]
- Physicist Brian Greene on learning to focus on the here and now - KCRW [Last Updated On: May 10th, 2020] [Originally Added On: May 10th, 2020]
- OK, WTF Are Virtual Particles and Do They Actually Exist? - VICE [Last Updated On: May 15th, 2020] [Originally Added On: May 15th, 2020]
- Is the Big Bang in crisis? | Astronomy.com - Astronomy Magazine [Last Updated On: May 15th, 2020] [Originally Added On: May 15th, 2020]
- Raytheon Technologies Board of Directors to Take Voluntary Compensation Reduction - PRNewswire [Last Updated On: May 15th, 2020] [Originally Added On: May 15th, 2020]
- What part of 'public' does PSC not get? - The Bozeman Daily Chronicle [Last Updated On: May 15th, 2020] [Originally Added On: May 15th, 2020]
- Exploring new tools in string theory - Space.com [Last Updated On: May 15th, 2020] [Originally Added On: May 15th, 2020]
- The Era of Anomalies - Physics [Last Updated On: May 15th, 2020] [Originally Added On: May 15th, 2020]
- Registration Open for Inaugural IEEE International Conference on Quantum Computing and Engineering (QCE20) - thepress.net [Last Updated On: May 15th, 2020] [Originally Added On: May 15th, 2020]
- Exploring the quantum field, from the sun's core to the Big Bang - MIT News [Last Updated On: May 15th, 2020] [Originally Added On: May 15th, 2020]
- The strange link between the human mind and quantum physics [Last Updated On: May 15th, 2020] [Originally Added On: May 15th, 2020]
- quantum mechanics | Definition, Development, & Equations ... [Last Updated On: May 15th, 2020] [Originally Added On: May 15th, 2020]
- Quantum Physics Introduction Made Simple for Beginners [Last Updated On: May 15th, 2020] [Originally Added On: May 15th, 2020]
- Company Hopes to Have Carbon Nanotube COVID-19 Detector Available in June - SciTechDaily [Last Updated On: May 23rd, 2020] [Originally Added On: May 23rd, 2020]
- The world is not as real as we think. - Patheos [Last Updated On: May 23rd, 2020] [Originally Added On: May 23rd, 2020]
- Armin Strom Discusses Resonance With PhD Of Quantum Physics And Watch Collector In An Easy-To-Understand Way (Video) - Quill & Pad [Last Updated On: May 23rd, 2020] [Originally Added On: May 23rd, 2020]
- Teaching the next generation of quantum scientists | Harvard John A. Paulson School of Engineering and Applied Sciences - Harvard School of... [Last Updated On: May 23rd, 2020] [Originally Added On: May 23rd, 2020]
- Nasa discovers parallel universe where time runs backwards? Know the truth - Business Standard [Last Updated On: May 23rd, 2020] [Originally Added On: May 23rd, 2020]
- Physicists Just Built The First Working Prototype Of A 'Quantum Radar' - ScienceAlert [Last Updated On: May 23rd, 2020] [Originally Added On: May 23rd, 2020]
- Next-Gen Laser Beams With Up to 10 Petawatts of Power Will Usher In New Era of Relativistic Plasmas Research - SciTechDaily [Last Updated On: May 26th, 2020] [Originally Added On: May 26th, 2020]
- What does the Tenet title mean? Quantum mechanics and Einsteins theory - Explica [Last Updated On: May 26th, 2020] [Originally Added On: May 26th, 2020]
- Looking up: UFO occupants and the legacy of language - Roswell Daily Record [Last Updated On: May 26th, 2020] [Originally Added On: May 26th, 2020]
- This is the light they have discovered and according to scientists it should not exist - Checkersaga [Last Updated On: June 2nd, 2020] [Originally Added On: June 2nd, 2020]
- MIT Student Probing Reality Through Physics, Philosophy and Writing - SciTechDaily [Last Updated On: June 2nd, 2020] [Originally Added On: June 2nd, 2020]
- David Baddiel: Kids have a better sense of humour than they used to' - The Guardian [Last Updated On: June 2nd, 2020] [Originally Added On: June 2nd, 2020]
- Some Information Regarding Medical Physics - - KUSI [Last Updated On: June 2nd, 2020] [Originally Added On: June 2nd, 2020]
- Francesca Vidotto: The Quantum Properties of Space-Time - JSTOR Daily [Last Updated On: June 2nd, 2020] [Originally Added On: June 2nd, 2020]
- These 8 Books Have the Power to Change Your Perspective on Life - Morocco World News [Last Updated On: June 8th, 2020] [Originally Added On: June 8th, 2020]
- Could Every Electron in the Universe Be the Same One? - Interesting Engineering [Last Updated On: June 8th, 2020] [Originally Added On: June 8th, 2020]
- Armijo: The absolute power of love | VailDaily.com - Vail Daily News [Last Updated On: June 8th, 2020] [Originally Added On: June 8th, 2020]
- Scientists predicted that the coronavirus death rate would fall over time, but instead it doubled. Here's why - Business Insider India [Last Updated On: June 13th, 2020] [Originally Added On: June 13th, 2020]
- Sussex Uni physicist creates the fifth state of matter whilst working from home - The Tab [Last Updated On: June 13th, 2020] [Originally Added On: June 13th, 2020]
- Beware of 'Theories of Everything' - Scientific American [Last Updated On: June 13th, 2020] [Originally Added On: June 13th, 2020]
- Duckworth on Education: The Feynman Technique - EMSWorld [Last Updated On: June 13th, 2020] [Originally Added On: June 13th, 2020]
- Scientists Discover Quantum Matter for the First Time in Space - Beebom [Last Updated On: June 14th, 2020] [Originally Added On: June 14th, 2020]
- Physicists May Have Solved Long-Standing Mystery of Matter and Antimatter - SciTechDaily [Last Updated On: June 14th, 2020] [Originally Added On: June 14th, 2020]
- Louis Broglie and the Idea of Wave-Particle Duality - Interesting Engineering [Last Updated On: June 14th, 2020] [Originally Added On: June 14th, 2020]
- Letter reveals the quirky side of Albert Einstein - Chile News | Breaking News, Views, Analysis - The Santiago Times [Last Updated On: June 14th, 2020] [Originally Added On: June 14th, 2020]
- Exploring the Quantum Field, From the Suns Core to the Big Bang at MIT - SciTechDaily [Last Updated On: June 14th, 2020] [Originally Added On: June 14th, 2020]
- 10 of the best non-fiction science books to read right now - New Scientist [Last Updated On: June 14th, 2020] [Originally Added On: June 14th, 2020]
- Quantum material research connecting physicists in Hong Kong, Beijing and Shanghai facilitates discovery of better materials that benefit our society... [Last Updated On: June 16th, 2020] [Originally Added On: June 16th, 2020]
- Flattening The Complexity Of Quantum Circuits - Asian Scientist Magazine [Last Updated On: June 16th, 2020] [Originally Added On: June 16th, 2020]
- Borrowing from robotics, scientists automate mapping of quantum systems - News - The University of Sydney [Last Updated On: June 16th, 2020] [Originally Added On: June 16th, 2020]
- Weird green glow spotted in atmosphere of Mars - Space.com [Last Updated On: June 16th, 2020] [Originally Added On: June 16th, 2020]
- Why Gravity Is Not Like the Other Forces - Quanta Magazine [Last Updated On: June 16th, 2020] [Originally Added On: June 16th, 2020]
- Cedar Hill grad pivots from science to law, determined to help others - The Dallas Morning News [Last Updated On: June 16th, 2020] [Originally Added On: June 16th, 2020]
- The stories a muon could tell - Symmetry magazine [Last Updated On: June 18th, 2020] [Originally Added On: June 18th, 2020]
- In the atmosphere of Mars, a green glow offers scientists hints for future visits - NBCNews.com [Last Updated On: June 18th, 2020] [Originally Added On: June 18th, 2020]
- Birdsong offers clues to the workings of short-term memory - AroundtheO [Last Updated On: June 18th, 2020] [Originally Added On: June 18th, 2020]
- Restructuring cybersecurity with the power of quantum - TechRadar [Last Updated On: June 18th, 2020] [Originally Added On: June 18th, 2020]
- Researchers Use Richard Feynman's Ideas to Develop a Working 'Theory of Everything' - Interesting Engineering [Last Updated On: June 18th, 2020] [Originally Added On: June 18th, 2020]
- Nano-motor of just 16 atoms runs at the boundary of quantum physics - New Atlas [Last Updated On: June 18th, 2020] [Originally Added On: June 18th, 2020]
- 'Everything was centered around Sara, he was lost': Abhishek Kapoor on Sushant Singh Rajput after 'Kedarnath' - DNA India [Last Updated On: June 21st, 2020] [Originally Added On: June 21st, 2020]
- Physicists have proposed a new theory for Bose-Einstein condensates - Tech Explorist [Last Updated On: June 21st, 2020] [Originally Added On: June 21st, 2020]
- 8.13 and 8.14: Physics Junior Lab - MIT Technology Review [Last Updated On: June 21st, 2020] [Originally Added On: June 21st, 2020]
- The Period of the Universe's Clock - Physics [Last Updated On: June 21st, 2020] [Originally Added On: June 21st, 2020]
- If Wormholes Are Actually Going to Work, They'll Need to Look Weird - Yahoo! Voices [Last Updated On: June 25th, 2020] [Originally Added On: June 25th, 2020]
- At Long Last: An Answer to the Mystery Surrounding Matter and Antimatter - SciTechDaily [Last Updated On: June 25th, 2020] [Originally Added On: June 25th, 2020]
- Lost and found in French translation - The Guardian [Last Updated On: June 25th, 2020] [Originally Added On: June 25th, 2020]
- Do we need a 'Quantum Generation'? | TheHill - The Hill [Last Updated On: June 25th, 2020] [Originally Added On: June 25th, 2020]