New research has demonstrated that a triple stack of graphene sheets twisted at a very specific angle could demonstrate superconductivity that survives exposure to intense magneticfields. The study was published in the journal Nature.
Image Credit:ktsdesign/Shutterstock.com
Superconductors - substances capable of conducting electricity without resistance - are poised to form the foundation of future technological and electronic advances, particularly in quantum computing.
While traditional conductors gradually lose resistance as they get colder-allowing progressively more electrons to flow- superconductors have a critical temperature at which resistance is lost completely, allowing the free flow of electrons.
The fact that most materials capable of becoming superconductors only do so at very low temperatures has made close-to-room temperature superconductors the holy grail of the materials science field.
This near room-temperature superconducting behavior is something that can be seen in graphenesingle layers of carbon atoms in a hexagonal arrangement. When these atom thin sheets of graphene are double stacked, and a little twist is applied, they begin to act as a superconductoreven at close to room temperatures.
High temperatures are not the only thing that turn-off superconductivity in a material. Exposure to a high magnetic field can also knock a superconductor into a regular conductive state. This has posed a challenge to developers of magnetic resonance imaging (MRI) devices, machines that rely on both superconductivity and intense magnetic fields.
Physicists from the Massachusetts Institute of Technology have found that not only is bilayer graphene a superconductor with a higher critical temperature, adding a third layer and applying a very specific angle54.7356 also known as the magic angleseems to allow superconductivity to be retained even in strong magnetic fields.
The team, led by Pablo Jarillo-Herrero, a Physics professor at MIT, discovered that when a trilayer of graphene is twisted in this way it seems to exhibit superconductivity in magnetic fields with a magnetic flux density as high as 10 Tesla. This is three times greater than the material could endure if it were a standard superconductor.
What the researchers believe they are seeing is a rare form of superconductivity called spin-triplet superconductivity.
The value of this experiment is what it teaches us about fundamental superconductivity, about how materials can behave, says Jarillo-Herrero. So with those lessons learned, we can try to design principles for other materials which would be easier to manufacture, that could perhaps give you better superconductivity.
One of the most striking demonstrations of how superconductors work can be seen by placing an ordinary magnet over the top of such a material while it is cooled with liquid nitrogen. The magnet levitates in place above the superconductor during this experiment. Whereas a normal conductor produces currents in a magnet moving past it via electromagnetic induction, superconductors push the magnetic fields out by inducing surface currents. Instead of allowing the magnetic field to pass through itwith this passage measured by magnetic fluxthe superconductor acts as a faux-magnet with the opposite polarity, repelling the real magneta phenomenon called the Meissner effect.
The key to explaining superconductivity lies in understanding how electrons behave in materials at extremely low temperatures. Thermal energy randomly vibrates atoms in a material, and the higher the temperature, the faster the atoms vibrate.
At high temperatures, electronswhich all have the same negative chargerepel each other and act as free particles. Yet, there is still a tiny attraction between electrons in solids and liquids, and at low temperatures, electrons group together into what is known as Cooper pairs.
In Cooper pairsnamed after American physicist Leon Cooper who first described this pairing up phenomenon in the mid-1950sthe electrons have an opposite spin. This is a quantum mechanical quantity that describes how a particle will behave when exposed to a magnetic field. One electron possesses spin up and the other has spin down. This state is described as a spin-singlet.
Cooper pairs travel unimpeded through a superconductor until they are exposed to a strong magnetic field. The electrons are then pulled in opposite directions, ripping the Cooper pairing apart.
Magnetic fields, therefore, destroy superconductivity. This is at least the case for spin-singlet superconductors. For exotic superconductors such as spin-triplet superconductors, the situation can be quite different.
In some exotic superconductors, electrons pair up with the same spin rather than opposite spinsor so-called spin-triplet pairs.
Spin describes how a particle behaves in a magnetic field. Particles of opposite spin move in opposite directions. However, if these electrons have the same spin, the Cooper pairing is not destroyed.Superconductivity is then preserved, even in extremely strong magnetic fields.
What Jarillo-Herrero and his teamalready known for their pioneering work with the electronic properties of twisted graphenewanted to discover was whether magic-angle trilayer graphene may display signs of spin-triplet superconductivity.
The researchers previously observed signs of this phenomenon in magic-angle bilayer graphene, but their new study showed that the effect is much stronger when an extra layer is added, with superconductivity retained at higher temperatures.
Surprisingly, trilayer graphene retained superconductivity in strong magnetic fields that would have wiped it out in its bilayer counterpart.To test this, the researchers exposed the magic-angle trilayer graphene to magnetic fields of increasing strengths. They found that superconductivity disappeared at a specific strength, but the graphene regained superconductivity at high field strengths.
This behavior is not seen in conventional spin-singlet superconductors.
The reintroduced superconductivity lasted in the magic-angle trilayer graphene up to a magnetic flux of 10 Tesla, but this was the maximum flux the teams magnet could achieve. This means that this resurrected superconductivity could actually persist in even stronger fields.
The conclusion reached by the team; magic-angle trilayer graphene is not a run-of-the-mill superconductor.
In spin-singlet superconductors, if you kill superconductivity, it never comes backits gone for good, says MIT postdoctoral researcher Yuan Cao. Here, it reappeared again. So this definitely says this material is not spin-singlet.
The question is: what exactly is the spin-state demonstrated by the material? This is something the team will now attempt to further investigate. Even with this question yet unanswered, we can still predict the kinds of applications that would benefit from this boosted resistance to magnetic fields.
The fact that this type of superconductor can resist high magnetic fields makes it incredibly useful across a range of applications; in particular, magnetic resonance imaging (MRI), which uses superconducting wires under intense magnetic fields to image biological tissues.
The functioning MRI devices are currently limited to their ability to resist a magnetic flux of no more than 3 Tesla, so if magic-angle graphene trilayer does display spin-triplet superconductivity, it could be used in such machines to boost their resistance to magnetic flux. The net result of this should be MRIs that can produce sharper and deeper images of human tissues.
Magic-angle trilayer graphene could be used in quantum computers to provide more resistant superconductors and much more powerful machines.
Regular quantum computing is super fragile. You look at it and, poof, it disappears, says Jarillo-Herrero. About 20 years ago, theorists proposed a type of topological superconductivity that, if realized in any material, could enable a quantum computer where states responsible for computation are very robust.
This results in a quantum computer with computing power that far exceeds anything currently available. However, the team does not yet know if the exotic superconductivity they have found in the magic-angle trilayer graphene is the right type to facilitate this computing boost.
The key ingredient to realizing that would be spin-triplet superconductors, of a certain type. We have no idea if our type is of that type, concludes Jarillo-Herrero. But even if its not, this could make it easier to put trilayer graphene with other materials to engineer that kind of superconductivity.
That could be a major breakthrough. But its still super early.
Jarillo-Herrero. P., Cao. Y., Park. J. M., et al, [2021] Pauli-limit violation and re-entrant superconductivity in moir graphene. Nature. https://doi.org/10.1038/s41586-021-03685-y
Disclaimer: The views expressed here are those of the author expressed in their private capacity and do not necessarily represent the views of AZoM.com Limited T/A AZoNetwork the owner and operator of this website. This disclaimer forms part of the Terms and conditions of use of this website.
See the article here:
'Magic Angle' Graphene and How it Could be a Magnet-Proof Superconducter - AZoM
- Mathematician breaks down how to defend against quantum ... - Phys.Org [Last Updated On: February 28th, 2017] [Originally Added On: February 28th, 2017]
- Here Is Everything You Need to Know About Quantum Computers - Interesting Engineering [Last Updated On: March 18th, 2017] [Originally Added On: March 18th, 2017]
- Quantum Computing Market Forecast 2017-2022 | Market ... [Last Updated On: March 18th, 2017] [Originally Added On: March 18th, 2017]
- What is Quantum Computing? Webopedia Definition [Last Updated On: March 18th, 2017] [Originally Added On: March 18th, 2017]
- Quantum computing is about to disrupt the government contracts market - Bloomberg Government (blog) [Last Updated On: April 22nd, 2017] [Originally Added On: April 22nd, 2017]
- Scientists: We Have Detected the Existence of a Fundamentally New State of Matter - Futurism [Last Updated On: April 22nd, 2017] [Originally Added On: April 22nd, 2017]
- What Sorts Of Problems Are Quantum Computers Good For? - Forbes [Last Updated On: April 22nd, 2017] [Originally Added On: April 22nd, 2017]
- quantum computing - WIRED UK [Last Updated On: April 22nd, 2017] [Originally Added On: April 22nd, 2017]
- Inside Microsoft's 'soup to nuts' quantum computing ramp-up - Computerworld Australia [Last Updated On: April 29th, 2017] [Originally Added On: April 29th, 2017]
- Molecular magnets closer to application in quantum computing - Next Big Future [Last Updated On: May 15th, 2017] [Originally Added On: May 15th, 2017]
- The Bizarre Quantum Test That Could Keep Your Data Secure - WIRED [Last Updated On: May 18th, 2017] [Originally Added On: May 18th, 2017]
- IBM boosts power of quantum computing processors as it lays ... - www.computing.co.uk [Last Updated On: May 22nd, 2017] [Originally Added On: May 22nd, 2017]
- IBM makes leap in quantum computing power - ITworld [Last Updated On: May 22nd, 2017] [Originally Added On: May 22nd, 2017]
- Toward mass-producible quantum computers | MIT News - MIT News [Last Updated On: June 2nd, 2017] [Originally Added On: June 2nd, 2017]
- Purdue, Microsoft Partner On Quantum Computing Research | WBAA - WBAA [Last Updated On: June 2nd, 2017] [Originally Added On: June 2nd, 2017]
- Tektronix AWG Pulls Test into Era of Quantum Computing - Electronic Design [Last Updated On: June 2nd, 2017] [Originally Added On: June 2nd, 2017]
- Google to Achieve "Supremacy" in Quantum Computing by the End of 2017 - Big Think [Last Updated On: July 1st, 2017] [Originally Added On: July 1st, 2017]
- Quantum Computing Becomes More Accessible - Scientific American [Last Updated On: July 1st, 2017] [Originally Added On: July 1st, 2017]
- Qudits: The Real Future of Quantum Computing? - IEEE Spectrum - IEEE Spectrum [Last Updated On: July 1st, 2017] [Originally Added On: July 1st, 2017]
- Alkermes and IBM's quantum computing. Who'll be the big winner? Malcolm Berko - Durham Herald Sun [Last Updated On: July 6th, 2017] [Originally Added On: July 6th, 2017]
- Quantum Computers Made Even More Powerful with New microchip generating 'Qudits' - TrendinTech [Last Updated On: July 8th, 2017] [Originally Added On: July 8th, 2017]
- Quantum Computing Record Broken - Wall Street Pit [Last Updated On: July 8th, 2017] [Originally Added On: July 8th, 2017]
- Technique for measuring and controlling electron state is a ... - UCLA Newsroom [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- Quantum cheques could be a forgery-free way to move money - New Scientist [Last Updated On: July 10th, 2017] [Originally Added On: July 10th, 2017]
- Quantum-computer node uses two different ion species - physicsworld.com [Last Updated On: July 10th, 2017] [Originally Added On: July 10th, 2017]
- Quantum Computers vs Bitcoin How Worried Should We Be? - The Merkle [Last Updated On: July 10th, 2017] [Originally Added On: July 10th, 2017]
- Why you might trust a quantum computer with secretseven over ... - Phys.Org [Last Updated On: July 12th, 2017] [Originally Added On: July 12th, 2017]
- Physicists Take Big Step Towards Quantum Computing and ... - Universe Today [Last Updated On: August 1st, 2017] [Originally Added On: August 1st, 2017]
- Quantum Computing Market Worth 495.3 Million USD by 2023 | 08 ... - Markets Insider [Last Updated On: August 10th, 2017] [Originally Added On: August 10th, 2017]
- China uses a quantum satellite to transmit potentially unhackable data - CNBC [Last Updated On: August 10th, 2017] [Originally Added On: August 10th, 2017]
- Blind quantum computing for everyone - Phys.org - Phys.Org [Last Updated On: August 12th, 2017] [Originally Added On: August 12th, 2017]
- Quantum Computing Is Real, and D-Wave Just Open ... - WIRED [Last Updated On: August 12th, 2017] [Originally Added On: August 12th, 2017]
- Machine learning tackles quantum error correction - Phys.Org [Last Updated On: August 15th, 2017] [Originally Added On: August 15th, 2017]
- Quantum Internet Is 13 Years Away. Wait, What's Quantum Internet? - WIRED [Last Updated On: August 15th, 2017] [Originally Added On: August 15th, 2017]
- Physicists Have Made Exotic Quantum States From Light - Futurism [Last Updated On: August 16th, 2017] [Originally Added On: August 16th, 2017]
- $495.3 Million Quantum Computing Market 2017 by Revenue Source, Application, Industry, and Geography - Global ... - PR Newswire (press release) [Last Updated On: August 18th, 2017] [Originally Added On: August 18th, 2017]
- How quantum mechanics can change computing - The Conversation US [Last Updated On: August 23rd, 2017] [Originally Added On: August 23rd, 2017]
- Introducing Australia's first quantum computing hardware company - Computerworld Australia [Last Updated On: August 23rd, 2017] [Originally Added On: August 23rd, 2017]
- IEEE Approves Standards Project for Quantum Computing ... - insideHPC [Last Updated On: August 23rd, 2017] [Originally Added On: August 23rd, 2017]
- Commonwealth Bank investing in Australia's first quantum computer company - Which-50 (blog) [Last Updated On: August 25th, 2017] [Originally Added On: August 25th, 2017]
- How quantum mechanics can change computing - San Francisco ... - San Francisco Chronicle [Last Updated On: August 25th, 2017] [Originally Added On: August 25th, 2017]
- Quantum Computing Is Coming at Us Fast, So Here's Everything You Need to Know - ScienceAlert [Last Updated On: August 27th, 2017] [Originally Added On: August 27th, 2017]
- Quantum computing event explores the implications for business - Cambridge Network [Last Updated On: August 30th, 2017] [Originally Added On: August 30th, 2017]
- Microsoft's Aussie quantum computing lab set to scale up next-gen ... - ARNnet [Last Updated On: September 7th, 2017] [Originally Added On: September 7th, 2017]
- An Entirely New Type of Quantum Computing Has Just Been Invented - Futurism [Last Updated On: September 7th, 2017] [Originally Added On: September 7th, 2017]
- Microsoft just upped its multi-million bet on quantum computing - ZDNet [Last Updated On: September 7th, 2017] [Originally Added On: September 7th, 2017]
- Here's what quantum computing is and why it matters [Last Updated On: October 6th, 2017] [Originally Added On: October 6th, 2017]
- What will you actually use quantum computing for? | ZDNet [Last Updated On: October 11th, 2017] [Originally Added On: October 11th, 2017]
- Quantum Computing | Intel Newsroom [Last Updated On: October 13th, 2017] [Originally Added On: October 13th, 2017]
- Intel Takes First Steps To Universal Quantum Computing [Last Updated On: October 13th, 2017] [Originally Added On: October 13th, 2017]
- Qudits: The Real Future of Quantum Computing? - IEEE Spectrum [Last Updated On: October 13th, 2017] [Originally Added On: October 13th, 2017]
- quantum computing - engadget.com [Last Updated On: October 13th, 2017] [Originally Added On: October 13th, 2017]
- Quantum computing - news.microsoft.com [Last Updated On: November 1st, 2017] [Originally Added On: November 1st, 2017]
- IBM's processor pushes quantum computing ... - engadget.com [Last Updated On: November 16th, 2017] [Originally Added On: November 16th, 2017]
- Yale Professors Race Google and IBM to the First Quantum ... [Last Updated On: November 16th, 2017] [Originally Added On: November 16th, 2017]
- Quantum Computing Is the Next Big Security Risk | WIRED [Last Updated On: December 8th, 2017] [Originally Added On: December 8th, 2017]
- Microsoft offers developers a preview of its quantum ... [Last Updated On: December 12th, 2017] [Originally Added On: December 12th, 2017]
- New silicon structure opens the gate to quantum computers [Last Updated On: December 14th, 2017] [Originally Added On: December 14th, 2017]
- Quantum Computing Explained | What is Quantum Computing? [Last Updated On: December 21st, 2017] [Originally Added On: December 21st, 2017]
- What is Quantum Computing? | SAP News Center [Last Updated On: December 23rd, 2017] [Originally Added On: December 23rd, 2017]
- Is Quantum Computing an Existential Threat to Blockchain ... [Last Updated On: December 25th, 2017] [Originally Added On: December 25th, 2017]
- IBM puts its quantum computer to work in relaxing, nerdy ASMR ... [Last Updated On: January 8th, 2018] [Originally Added On: January 8th, 2018]
- Quantum computing is going to change the world. Here's what ... [Last Updated On: January 8th, 2018] [Originally Added On: January 8th, 2018]
- The Era of Quantum Computing Is Here. Outlook: Cloudy ... [Last Updated On: January 26th, 2018] [Originally Added On: January 26th, 2018]
- What is quantum computing? - Definition from WhatIs.com [Last Updated On: February 5th, 2018] [Originally Added On: February 5th, 2018]
- Senate bills would make quantum computing a priority [Last Updated On: June 10th, 2018] [Originally Added On: June 10th, 2018]
- Two Quantum Computing Bills Are Coming To Congress [Last Updated On: July 5th, 2018] [Originally Added On: July 5th, 2018]
- Quantum Computing Market Research Report- Forecast 2022 | MRFR [Last Updated On: August 1st, 2018] [Originally Added On: August 1st, 2018]
- What Is Quantum Computing? The Complete WIRED Guide | WIRED [Last Updated On: August 22nd, 2018] [Originally Added On: August 22nd, 2018]
- Quantum Computing | USRA [Last Updated On: August 30th, 2018] [Originally Added On: August 30th, 2018]
- The quantum computing race the US cant afford to lose [Last Updated On: September 3rd, 2018] [Originally Added On: September 3rd, 2018]
- The reality of quantum computing could be just three years ... [Last Updated On: September 12th, 2018] [Originally Added On: September 12th, 2018]
- US takes first step toward a quantum computing workforce ... [Last Updated On: September 17th, 2018] [Originally Added On: September 17th, 2018]
- China bet big on quantum computing. Now the ... - money.cnn.com [Last Updated On: September 17th, 2018] [Originally Added On: September 17th, 2018]
- China bet big on quantum computing. Now the US races to ... [Last Updated On: October 26th, 2018] [Originally Added On: October 26th, 2018]
- A new type of quantum computer has smashed every record ... [Last Updated On: December 21st, 2018] [Originally Added On: December 21st, 2018]
- IBM unveils its first commercial quantum computer [Last Updated On: January 9th, 2019] [Originally Added On: January 9th, 2019]
- IBM thinks outside of the lab, puts quantum computer in a box [Last Updated On: January 11th, 2019] [Originally Added On: January 11th, 2019]
- Quantum Computing | The MIT Press [Last Updated On: January 11th, 2019] [Originally Added On: January 11th, 2019]
- CES 2019: IBM's Q System One Is the Rock Star Quantum ... [Last Updated On: January 13th, 2019] [Originally Added On: January 13th, 2019]