The electron is the basic unit of electricity, as it carries a single negative charge. This is what were taught in high school physics, and it is overwhelmingly the case in most materials in nature.
But in very special states of matter, electrons can splinter into fractions of their whole. This phenomenon, known as fractional charge, is exceedingly rare, and if it can be corralled and controlled, the exotic electronic state could help to build resilient, fault-tolerant quantum computers.
To date, this effect, known to physicists as the fractional quantum Hall effect, has been observed a handful of times, and mostly under very high, carefully maintained magnetic fields. Only recently have scientists seen the effect in a material that did not require such powerful magnetic manipulation.
Now, MIT physicists have observed the elusive fractional charge effect, this time in a simpler material: five layers of graphene an atom-thin layer of carbon that stems from graphite and common pencil lead. They report their results today in Nature.
They found that when five sheets of graphene are stacked like steps on a staircase, the resulting structure inherently provides just the right conditions for electrons to pass through as fractions of their total charge, with no need for any external magnetic field.
The results are the first evidence of the fractional quantum anomalous Hall effect (the term anomalous refers to the absence of a magnetic field) in crystalline graphene, a material that physicists did not expect to exhibit this effect.
This five-layer graphene is a material system where many good surprises happen, says study author Long Ju, assistant professor of physics at MIT. Fractional charge is just so exotic, and now we can realize this effect with a much simpler system and without a magnetic field. That in itself is important for fundamental physics. And it could enable the possibility for a type of quantum computing that is more robust against perturbation.
Jus MIT co-authors are lead author Zhengguang Lu, Tonghang Han, Yuxuan Yao, Aidan Reddy, Jixiang Yang, Junseok Seo, and Liang Fu, along with Kenji Watanabe and Takashi Taniguchi at the National Institute for Materials Science in Japan.
A bizarre state
The fractional quantum Hall effectis an example of the weird phenomena that can arise when particles shift from behaving as individual units to acting together as a whole. This collective correlated behavior emerges in special states, for instance when electrons are slowed from their normally frenetic pace to a crawl that enables the particles to sense each other and interact. These interactions can produce rare electronic states, such as the seemingly unorthodox splitting of an electrons charge.
In 1982, scientists discovered the fractional quantum Hall effect in heterostructures of gallium arsenide, where a gas of electrons confined in a two-dimensional plane is placed under high magnetic fields. The discovery later won the group a Nobel Prize in Physics.
[The discovery] was a very big deal, because these unit charges interacting in a way to give something like fractional charge was very, very bizarre, Ju says. At the time, there were no theory predictions, and the experiments surprised everyone.
Those researchers achieved their groundbreaking results using magnetic fields to slow down the materials electrons enough for them to interact. The fields they worked with were about 10 times stronger than what typically powers an MRI machine.
In August 2023, scientists at the University of Washington reported the first evidence of fractional charge without a magnetic field. They observed this anomalous version of the effect, in a twisted semiconductor called molybdenum ditelluride. The group prepared the material in a specific configuration, which theorists predicted would give the material an inherent magnetic field, enough to encourage electrons to fractionalize without any external magnetic control.
The no magnets result opened a promising route to topological quantum computing a more secure form of quantum computing, in which the added ingredient of topology (a property that remains unchanged in the face of weak deformation or disturbance) gives a qubit added protection when carrying out a computation. This computation scheme is based on a combination of fractional quantum Hall effect and a superconductor. It used to be almost impossible to realize: One needs a strong magnetic field to get fractional charge, while the same magnetic field will usually kill the superconductor. In this case the fractional charges would serve as a qubit (the basic unit of a quantum computer).
Making steps
That same month, Ju and his team happened to also observe signs of anomalous fractional charge in graphene a material for which there had been no predictions for exhibiting such an effect.
Jus group has been exploring electronic behavior in graphene, which by itself has exhibited exceptional properties. Most recently, Jus group has looked into pentalayer graphene a structure of five graphene sheets, each stacked slightly off from the other, like steps on a staircase. Such pentalayer graphene structure is embedded in graphite and can be obtained by exfoliation using Scotch tape. When placed in a refrigerator at ultracold temperatures, the structures electrons slow to a crawl and interact in ways they normally wouldnt when whizzing around at higher temperatures.
In their new work, the researchers did some calculations and found that electrons might interact with each other even more strongly if the pentalayer structure were aligned with hexagonal boron nitride (hBN) a material that has a similar atomic structure to that of graphene, but with slightly different dimensions. In combination, the two materials should produce a moir superlattice an intricate, scaffold-like atomic structure that could slow electrons down in ways that mimic a magnetic field.
We did these calculations, then thought, lets go for it, says Ju, who happened to install a new dilution refrigerator in his MIT lab last summer, which the team planned to use to cool materials down to ultralow temperatures, to study exotic electronic behavior.
The researchers fabricated two samples of the hybrid graphene structure by first exfoliating graphene layers from a block of graphite, then usingoptical tools to identify five-layered flakes in the steplike configuration. They then stamped the graphene flake onto an hBN flake and placed a second hBN flake over the graphene structure. Finally, they attached electrodes to the structure and placed it in the refrigerator, set to near absolute zero.
As they applied a current to the material and measured the voltage output, they started to see signatures of fractional charge, where the voltage equals the current multiplied by a fractional number and some fundamental physics constants.
The day we saw it, we didnt recognize it at first, says first author Lu. Then we started to shout as we realized, this was really big. It was a completely surprising moment.
This was probably the first serious samples we put in the new fridge, adds co-first author Han. Once we calmed down, we looked in detail to make sure that what we were seeing was real.
With further analysis, the team confirmed that the graphene structure indeed exhibited the fractional quantum anomalous Hall effect. It is the first time the effect has been seen in graphene.
Graphene can also be a superconductor, Ju says. So, you could have two totally different effects in the same material, right next to each other. If you use graphene to talk to graphene, it avoids a lot of unwanted effects when bridging graphene with other materials.
For now, the group is continuing to explore multilayer graphene for other rare electronic states.
We are diving in to explore many fundamental physics ideas and applications, he says. We know there will be more to come.
This research is supported in part by the Sloan Foundation, and the National Science Foundation.
Here is the original post:
Electrons become fractions of themselves in graphene, study finds - MIT News
- Mathematician breaks down how to defend against quantum ... - Phys.Org [Last Updated On: February 28th, 2017] [Originally Added On: February 28th, 2017]
- Here Is Everything You Need to Know About Quantum Computers - Interesting Engineering [Last Updated On: March 18th, 2017] [Originally Added On: March 18th, 2017]
- Quantum Computing Market Forecast 2017-2022 | Market ... [Last Updated On: March 18th, 2017] [Originally Added On: March 18th, 2017]
- What is Quantum Computing? Webopedia Definition [Last Updated On: March 18th, 2017] [Originally Added On: March 18th, 2017]
- Quantum computing is about to disrupt the government contracts market - Bloomberg Government (blog) [Last Updated On: April 22nd, 2017] [Originally Added On: April 22nd, 2017]
- Scientists: We Have Detected the Existence of a Fundamentally New State of Matter - Futurism [Last Updated On: April 22nd, 2017] [Originally Added On: April 22nd, 2017]
- What Sorts Of Problems Are Quantum Computers Good For? - Forbes [Last Updated On: April 22nd, 2017] [Originally Added On: April 22nd, 2017]
- quantum computing - WIRED UK [Last Updated On: April 22nd, 2017] [Originally Added On: April 22nd, 2017]
- Inside Microsoft's 'soup to nuts' quantum computing ramp-up - Computerworld Australia [Last Updated On: April 29th, 2017] [Originally Added On: April 29th, 2017]
- Molecular magnets closer to application in quantum computing - Next Big Future [Last Updated On: May 15th, 2017] [Originally Added On: May 15th, 2017]
- The Bizarre Quantum Test That Could Keep Your Data Secure - WIRED [Last Updated On: May 18th, 2017] [Originally Added On: May 18th, 2017]
- IBM boosts power of quantum computing processors as it lays ... - www.computing.co.uk [Last Updated On: May 22nd, 2017] [Originally Added On: May 22nd, 2017]
- IBM makes leap in quantum computing power - ITworld [Last Updated On: May 22nd, 2017] [Originally Added On: May 22nd, 2017]
- Toward mass-producible quantum computers | MIT News - MIT News [Last Updated On: June 2nd, 2017] [Originally Added On: June 2nd, 2017]
- Purdue, Microsoft Partner On Quantum Computing Research | WBAA - WBAA [Last Updated On: June 2nd, 2017] [Originally Added On: June 2nd, 2017]
- Tektronix AWG Pulls Test into Era of Quantum Computing - Electronic Design [Last Updated On: June 2nd, 2017] [Originally Added On: June 2nd, 2017]
- Google to Achieve "Supremacy" in Quantum Computing by the End of 2017 - Big Think [Last Updated On: July 1st, 2017] [Originally Added On: July 1st, 2017]
- Quantum Computing Becomes More Accessible - Scientific American [Last Updated On: July 1st, 2017] [Originally Added On: July 1st, 2017]
- Qudits: The Real Future of Quantum Computing? - IEEE Spectrum - IEEE Spectrum [Last Updated On: July 1st, 2017] [Originally Added On: July 1st, 2017]
- Alkermes and IBM's quantum computing. Who'll be the big winner? Malcolm Berko - Durham Herald Sun [Last Updated On: July 6th, 2017] [Originally Added On: July 6th, 2017]
- Quantum Computers Made Even More Powerful with New microchip generating 'Qudits' - TrendinTech [Last Updated On: July 8th, 2017] [Originally Added On: July 8th, 2017]
- Quantum Computing Record Broken - Wall Street Pit [Last Updated On: July 8th, 2017] [Originally Added On: July 8th, 2017]
- Technique for measuring and controlling electron state is a ... - UCLA Newsroom [Last Updated On: July 9th, 2017] [Originally Added On: July 9th, 2017]
- Quantum cheques could be a forgery-free way to move money - New Scientist [Last Updated On: July 10th, 2017] [Originally Added On: July 10th, 2017]
- Quantum-computer node uses two different ion species - physicsworld.com [Last Updated On: July 10th, 2017] [Originally Added On: July 10th, 2017]
- Quantum Computers vs Bitcoin How Worried Should We Be? - The Merkle [Last Updated On: July 10th, 2017] [Originally Added On: July 10th, 2017]
- Why you might trust a quantum computer with secretseven over ... - Phys.Org [Last Updated On: July 12th, 2017] [Originally Added On: July 12th, 2017]
- Physicists Take Big Step Towards Quantum Computing and ... - Universe Today [Last Updated On: August 1st, 2017] [Originally Added On: August 1st, 2017]
- Quantum Computing Market Worth 495.3 Million USD by 2023 | 08 ... - Markets Insider [Last Updated On: August 10th, 2017] [Originally Added On: August 10th, 2017]
- China uses a quantum satellite to transmit potentially unhackable data - CNBC [Last Updated On: August 10th, 2017] [Originally Added On: August 10th, 2017]
- Blind quantum computing for everyone - Phys.org - Phys.Org [Last Updated On: August 12th, 2017] [Originally Added On: August 12th, 2017]
- Quantum Computing Is Real, and D-Wave Just Open ... - WIRED [Last Updated On: August 12th, 2017] [Originally Added On: August 12th, 2017]
- Machine learning tackles quantum error correction - Phys.Org [Last Updated On: August 15th, 2017] [Originally Added On: August 15th, 2017]
- Quantum Internet Is 13 Years Away. Wait, What's Quantum Internet? - WIRED [Last Updated On: August 15th, 2017] [Originally Added On: August 15th, 2017]
- Physicists Have Made Exotic Quantum States From Light - Futurism [Last Updated On: August 16th, 2017] [Originally Added On: August 16th, 2017]
- $495.3 Million Quantum Computing Market 2017 by Revenue Source, Application, Industry, and Geography - Global ... - PR Newswire (press release) [Last Updated On: August 18th, 2017] [Originally Added On: August 18th, 2017]
- How quantum mechanics can change computing - The Conversation US [Last Updated On: August 23rd, 2017] [Originally Added On: August 23rd, 2017]
- Introducing Australia's first quantum computing hardware company - Computerworld Australia [Last Updated On: August 23rd, 2017] [Originally Added On: August 23rd, 2017]
- IEEE Approves Standards Project for Quantum Computing ... - insideHPC [Last Updated On: August 23rd, 2017] [Originally Added On: August 23rd, 2017]
- Commonwealth Bank investing in Australia's first quantum computer company - Which-50 (blog) [Last Updated On: August 25th, 2017] [Originally Added On: August 25th, 2017]
- How quantum mechanics can change computing - San Francisco ... - San Francisco Chronicle [Last Updated On: August 25th, 2017] [Originally Added On: August 25th, 2017]
- Quantum Computing Is Coming at Us Fast, So Here's Everything You Need to Know - ScienceAlert [Last Updated On: August 27th, 2017] [Originally Added On: August 27th, 2017]
- Quantum computing event explores the implications for business - Cambridge Network [Last Updated On: August 30th, 2017] [Originally Added On: August 30th, 2017]
- Microsoft's Aussie quantum computing lab set to scale up next-gen ... - ARNnet [Last Updated On: September 7th, 2017] [Originally Added On: September 7th, 2017]
- An Entirely New Type of Quantum Computing Has Just Been Invented - Futurism [Last Updated On: September 7th, 2017] [Originally Added On: September 7th, 2017]
- Microsoft just upped its multi-million bet on quantum computing - ZDNet [Last Updated On: September 7th, 2017] [Originally Added On: September 7th, 2017]
- Here's what quantum computing is and why it matters [Last Updated On: October 6th, 2017] [Originally Added On: October 6th, 2017]
- What will you actually use quantum computing for? | ZDNet [Last Updated On: October 11th, 2017] [Originally Added On: October 11th, 2017]
- Quantum Computing | Intel Newsroom [Last Updated On: October 13th, 2017] [Originally Added On: October 13th, 2017]
- Intel Takes First Steps To Universal Quantum Computing [Last Updated On: October 13th, 2017] [Originally Added On: October 13th, 2017]
- Qudits: The Real Future of Quantum Computing? - IEEE Spectrum [Last Updated On: October 13th, 2017] [Originally Added On: October 13th, 2017]
- quantum computing - engadget.com [Last Updated On: October 13th, 2017] [Originally Added On: October 13th, 2017]
- Quantum computing - news.microsoft.com [Last Updated On: November 1st, 2017] [Originally Added On: November 1st, 2017]
- IBM's processor pushes quantum computing ... - engadget.com [Last Updated On: November 16th, 2017] [Originally Added On: November 16th, 2017]
- Yale Professors Race Google and IBM to the First Quantum ... [Last Updated On: November 16th, 2017] [Originally Added On: November 16th, 2017]
- Quantum Computing Is the Next Big Security Risk | WIRED [Last Updated On: December 8th, 2017] [Originally Added On: December 8th, 2017]
- Microsoft offers developers a preview of its quantum ... [Last Updated On: December 12th, 2017] [Originally Added On: December 12th, 2017]
- New silicon structure opens the gate to quantum computers [Last Updated On: December 14th, 2017] [Originally Added On: December 14th, 2017]
- Quantum Computing Explained | What is Quantum Computing? [Last Updated On: December 21st, 2017] [Originally Added On: December 21st, 2017]
- What is Quantum Computing? | SAP News Center [Last Updated On: December 23rd, 2017] [Originally Added On: December 23rd, 2017]
- Is Quantum Computing an Existential Threat to Blockchain ... [Last Updated On: December 25th, 2017] [Originally Added On: December 25th, 2017]
- IBM puts its quantum computer to work in relaxing, nerdy ASMR ... [Last Updated On: January 8th, 2018] [Originally Added On: January 8th, 2018]
- Quantum computing is going to change the world. Here's what ... [Last Updated On: January 8th, 2018] [Originally Added On: January 8th, 2018]
- The Era of Quantum Computing Is Here. Outlook: Cloudy ... [Last Updated On: January 26th, 2018] [Originally Added On: January 26th, 2018]
- What is quantum computing? - Definition from WhatIs.com [Last Updated On: February 5th, 2018] [Originally Added On: February 5th, 2018]
- Senate bills would make quantum computing a priority [Last Updated On: June 10th, 2018] [Originally Added On: June 10th, 2018]
- Two Quantum Computing Bills Are Coming To Congress [Last Updated On: July 5th, 2018] [Originally Added On: July 5th, 2018]
- Quantum Computing Market Research Report- Forecast 2022 | MRFR [Last Updated On: August 1st, 2018] [Originally Added On: August 1st, 2018]
- What Is Quantum Computing? The Complete WIRED Guide | WIRED [Last Updated On: August 22nd, 2018] [Originally Added On: August 22nd, 2018]
- Quantum Computing | USRA [Last Updated On: August 30th, 2018] [Originally Added On: August 30th, 2018]
- The quantum computing race the US cant afford to lose [Last Updated On: September 3rd, 2018] [Originally Added On: September 3rd, 2018]
- The reality of quantum computing could be just three years ... [Last Updated On: September 12th, 2018] [Originally Added On: September 12th, 2018]
- US takes first step toward a quantum computing workforce ... [Last Updated On: September 17th, 2018] [Originally Added On: September 17th, 2018]
- China bet big on quantum computing. Now the ... - money.cnn.com [Last Updated On: September 17th, 2018] [Originally Added On: September 17th, 2018]
- China bet big on quantum computing. Now the US races to ... [Last Updated On: October 26th, 2018] [Originally Added On: October 26th, 2018]
- A new type of quantum computer has smashed every record ... [Last Updated On: December 21st, 2018] [Originally Added On: December 21st, 2018]
- IBM unveils its first commercial quantum computer [Last Updated On: January 9th, 2019] [Originally Added On: January 9th, 2019]
- IBM thinks outside of the lab, puts quantum computer in a box [Last Updated On: January 11th, 2019] [Originally Added On: January 11th, 2019]
- Quantum Computing | The MIT Press [Last Updated On: January 11th, 2019] [Originally Added On: January 11th, 2019]
- CES 2019: IBM's Q System One Is the Rock Star Quantum ... [Last Updated On: January 13th, 2019] [Originally Added On: January 13th, 2019]