Quantum cryptography is the science of exploiting quantum mechanical properties to perform cryptographic tasks. The best known example of quantum cryptography is quantum key distribution which offers an information-theoretically secure solution to the key exchange problem. Currently used popular public-key encryption and signature schemes (e.g., RSA and ElGamal) can be broken by quantum adversaries. The advantage of quantum cryptography lies in the fact that it allows the completion of various cryptographic tasks that are proven or conjectured to be impossible using only classical (i.e. non-quantum) communication (see below for examples). For example, it is impossible to copy data encoded in a quantum state and the very act of reading data encoded in a quantum state changes the state. This is used to detect eavesdropping in quantum key distribution.
Quantum cryptography uses Heisenberg's uncertainty principle[1] formulated in 1927, and the No-cloning theorem[2] first articulated by Wootters and Zurek and Dieks in 1982. Werner Heisenberg discovered one of the fundamental principles of quantum mechanics: "At the instant at which the position of the electron is known, its momentum therefore can be known only up to magnitudes which correspond to that discontinuous change; thus, the more precisely the position is determined, the less precisely the momentum is known, and conversely[3] (Heisenberg, 1927: 1745). This simply means that observation of quanta changes its behavior. By measuring the velocity of quanta we would affect it, and thereby change its position; if we want to find a quant's position, we are forced to change its velocity. Therefore, we cannot measure a quantum system's characteristics without changing it[4] (Clark, n.d.) and we cannot record all characteristics of a quantum system before those characteristics are measured. The No-cloning theorem demonstrates that it is impossible to create a copy of an arbitrary unknown quantum state. This makes unobserved eavesdropping impossible because it will be quickly detected, thus greatly improving assurance that the communicated data remains private.
Quantum cryptography was proposed first by Stephen Wiesner, then at Columbia University in New York, who, in the early 1970s, introduced the concept of quantum conjugate coding. His seminal paper titled "Conjugate Coding" was rejected by IEEE Information Theory Society, but was eventually published in 1983 in SIGACT News (15:1 pp.7888, 1983). In this paper he showed how to store or transmit two messages by encoding them in two "conjugate observables", such as linear and circular polarization of light, so that either, but not both, of which may be received and decoded. He illustrated his idea with a design of unforgeable bank notes. In 1984, building upon this work, Charles H. Bennett, of the IBM's Thomas J. Watson Research Center, and Gilles Brassard, of the Universit de Montral, proposed a method for secure communication based on Wiesner's "conjugate observables", which is now called BB84.[5] In 1991 Artur Ekert developed a different approach to quantum key distribution based on peculiar quantum correlations known as quantum entanglement.[6]
Random rotations of the polarization by both parties (usually called Alice and Bob) have been proposed in Kak's three-stage quantum cryptography protocol.[7] In principle, this method can be used for continuous, unbreakable encryption of data if single photons are used.[8] The basic polarization rotation scheme has been implemented.[9]
The BB84 method is at the basis of quantum key distribution methods. Companies that manufacture quantum cryptography systems include MagiQ Technologies, Inc. (Boston, Massachusetts, United States), ID Quantique (Geneva, Switzerland), QuintessenceLabs (Canberra, Australia) and SeQureNet (Paris, France).
The most well known and developed application of quantum cryptography is quantum key distribution, which is the process of using quantum communication to establish a shared key between two parties (Alice and Bob, for example) without a third party (Eve) learning anything about that key, even if Eve can eavesdrop on all communication between Alice and Bob. If Eve tries to learn information about the key being established, key establishment will fail causing Alice and Bob to notice. Once the key is established, it is then typically used for encrypted communication using classical techniques. For instance, the exchanged key could be used as for symmetric cryptography.
The security of quantum key distribution can be proven mathematically without imposing any restrictions on the abilities of an eavesdropper, something not possible with classical key distribution. This is usually described as "unconditional security", although there are some minimal assumptions required, including that the laws of quantum mechanics apply and that Alice and Bob are able to authenticate each other, i.e. Eve should not be able to impersonate Alice or Bob as otherwise a man-in-the-middle attack would be possible.
One aspect of quantum key distribution is that it is secure against quantum computers. Its strength does not depend on mathematical complexity, like post-quantum cryptography, but on physical principles.
Unlike quantum key distribution, quantum coin flipping is a protocol that is used between two participants who do not trust each other.[10] The participants communicate via a quantum channel and exchange information through the transmission of qubits.[11] Alice will determine a random basis and sequence of qubits and then transmit them to Bob. Bob then detects and records the qubits. Once Bob has recorded the qubits sent by Alice, he makes a guess to Alice on what basis she chose. Alice reports whether he won or lost to Bob and then sends Bob her entire original qubit sequence. Since the two parties do not trust each other, cheating is likely to occur at any step in the process. [12]
Quantum coin flipping is theoretically a secure means of communicating through two distrustful parties, but it is difficult to physically accomplish. [10]
Following the discovery of quantum key distribution and its unconditional security, researchers tried to achieve other cryptographic tasks with unconditional security. One such task was commitment. A commitment scheme allows a party Alice to fix a certain value (to "commit") in such a way that Alice cannot change that value while at the same time ensuring that the recipient Bob cannot learn anything about that value until Alice reveal it. Such commitment schemes are commonly in cryptographic protocols. In the quantum setting, they would be particularly useful: Crpeau and Kilian showed that from a commitment and a quantum channel, one can construct an unconditionally secure protocol for performing so-called oblivious transfer.[13]Oblivious transfer, on the other hand, had been shown by Kilian to allow implementation of almost any distributed computation in a secure way (so-called secure multi-party computation).[14] (Notice that here we are a bit imprecise: The results by Crpeau and Kilian[13][14] together do not directly imply that given a commitment and a quantum channel one can perform secure multi-party computation. This is because the results do not guarantee "composability", that is, when plugging them together, one might lose security. Later works showed, however, how composability can be ensured in this setting.[citation needed])
Unfortunately, early quantum commitment protocols[15] were shown to be flawed. In fact, Mayers showed that (unconditionally secure) quantum commitment is impossible: a computationally unlimited attacker can break any quantum commitment protocol.[16]
Yet, the result by Mayers does not preclude the possibility of constructing quantum commitment protocols (and thus secure multi-party computation protocols) under assumptions that they are much weaker than the assumptions needed for commitment protocols that do not use quantum communication. The bounded quantum storage model described below is an example for a setting in which quantum communication can be used to construct commitment protocols. A breakthrough in November 2013 offers "unconditional" security of information by harnessing quantum theory and relativity, which has been successfully demonstrated on a global scale for the first time.[17]
One possibility to construct unconditionally secure quantum commitment and quantum oblivious transfer (OT) protocols is to use the bounded quantum storage model (BQSM). In this model, we assume that the amount of quantum data that an adversary can store is limited by some known constant Q. We do not, however, impose any limit on the amount of classical (i.e., non-quantum) data the adversary may store.
In the BQSM, one can construct commitment and oblivious transfer protocols.[18] The underlying idea is the following: The protocol parties exchange more than Q quantum bits (qubits). Since even a dishonest party cannot store all that information (the quantum memory of the adversary is limited to Q qubits), a large part of the data will have to be either measured or discarded. Forcing dishonest parties to measure a large part of the data allows to circumvent the impossibility result by Mayers;[16] commitment and oblivious transfer protocols can now be implemented.
The protocols in the BQSM presented by Damgrd, Fehr, Salvail, and Schaffner[18] do not assume that honest protocol participants store any quantum information; the technical requirements are similar to those in QKD protocols. These protocols can thus, at least in principle, be realized with today's technology. The communication complexity is only a constant factor larger than the bound Q on the adversary's quantum memory.
The advantage of the BQSM is that the assumption that the adversary's quantum memory is limited is quite realistic. With today's technology, storing even a single qubit reliably over a sufficiently long time is difficult. (What "sufficiently long" means depends on the protocol details. By introducing an artificial pause in the protocol, the amount of time over which the adversary needs to store quantum data can be made arbitrarily large.)
An extension of the BQSM is the noisy-storage model introduced by Wehner, Schaffner and Terhal.[19] Instead of considering an upper bound on the physical size of the adversary's quantum memory, an adversary is allowed to use imperfect quantum storage devices of arbitrary size. The level of imperfection is modelled by noisy quantum channels. For high enough noise levels, the same primitives as in the BQSM can be achieved[20] and the BQSM forms a special case of the noisy-storage model.
In the classical setting, similar results can be achieved when assuming a bound on the amount of classical (non-quantum) data that the adversary can store.[21] It was proven, however, that in this model also the honest parties have to use a large amount of memory (namely the square-root of the adversary's memory bound).[22] This makes these protocols impractical for realistic memory bounds. (Note that with today's technology such as hard disks, an adversary can cheaply store large amounts of classical data.)
The goal of position-based quantum cryptography is to use the geographical location of a player as its (only) credential. For example, one wants to send a message to a player at a specified position with the guarantee that it can only be read if the receiving party is located at that particular position. In the basic task of position-verification, a player, Alice, wants to convince the (honest) verifiers that she is located at a particular point. It has been shown by Chandran et al. that position-verification using classical protocols is impossible against colluding adversaries (who control all positions except the prover's claimed position).[23] Under various restrictions on the adversaries, schemes are possible.
Under the name of 'quantum tagging', the first position-based quantum schemes have been investigated in 2002 by Kent. A US-patent[24] was granted in 2006, but the results only appeared in the scientific literature in 2010.[25] After several other quantum protocols for position verification have been suggested in 2010,[26][27] Buhrman et al. were able to show a general impossibility result:[28] using an enormous amount of quantum entanglement (they use a doubly exponential number of EPR pairs, in the number of qubits the honest player operates on), colluding adversaries are always able to make it look to the verifiers as if they were at the claimed position. However, this result does not exclude the possibility of practical schemes in the bounded- or noisy-quantum-storage model (see above). Later Beigi and Knig improved the amount of EPR pairs needed in the general attack against position-verification protocols to exponential. They also showed that a particular protocol remains secure against adversaries who controls only a linear amount of EPR pairs.[29]
A quantum cryptographic protocol is device-independent if its security does not rely on trusting that the quantum devices used are truthful. Thus the security analysis of such a protocol needs to consider scenarios of imperfect or even malicious devices. Mayers and Yao[30] proposed the idea of designing quantum protocols using "self-testing" quantum apparatus, the internal operations of which can be uniquely determined by their input-output statistics. Subsequently, Roger Colbeck in his Thesis[31] proposed the use of Bell tests for checking the honesty of the devices. Since then, several problems have been shown to admit unconditional secure and device-independent protocols, even when the actual devices performing the Bell test are substantially "noisy," i.e., far from being ideal. These problems include quantum key distribution,[32][33]randomness expansion,[33][34] and randomness amplification.[35]
Quantum computers may become a technological reality; it is therefore important to study cryptographic schemes used against adversaries with access to a quantum computer. The study of such schemes is often referred to as post-quantum cryptography. The need for post-quantum cryptography arises from the fact that many popular encryption and signature schemes (such as RSA and its variants, and schemes based on elliptic curves) can be broken using Shor's algorithm for factoring and computing discrete logarithms on a quantum computer. Examples for schemes that are, as of today's knowledge, secure against quantum adversaries are McEliece and lattice-based schemes. Surveys of post-quantum cryptography are available.[36][37]
There is also research into how existing cryptographic techniques have to be modified to be able to cope with quantum adversaries. For example, when trying to develop zero-knowledge proof systems that are secure against quantum adversaries, new techniques need to be used: In a classical setting, the analysis of a zero-knowledge proof system usually involves "rewinding", a technique that makes it necessary to copy the internal state of the adversary. In a quantum setting, copying a state is not always possible (no-cloning theorem); a variant of the rewinding technique has to be used.[38]
Post quantum algorithms are also called "quantum resistant", because unlike QKD it is not known or provable that there will not be potential future quantum attacks against them. Even though they are not vulnerable to Shor's algorithm the NSA are announcing plans to transition to quantum resistant algorithms.[39] The National Institute of Security and Technology (NIST) believes that it is time to think of quantum-safe primitives.[40]
Continued here:
Quantum cryptography - Wikipedia
- Two Quantum Computers Face-Off for the First Time in History! - Interesting Engineering [Last Updated On: February 26th, 2017] [Originally Added On: February 26th, 2017]
- Split decision in first-ever quantum computer faceoff | Science | AAAS - Science Magazine [Last Updated On: February 26th, 2017] [Originally Added On: February 26th, 2017]
- How to defend against quantum computing attacks - ScienceBlog.com - ScienceBlog.com (blog) [Last Updated On: February 28th, 2017] [Originally Added On: February 28th, 2017]
- Researchers Have Directly Tested Two Quantum Computing ... - Futurism [Last Updated On: February 28th, 2017] [Originally Added On: February 28th, 2017]
- Scientists reveal new super-fast form of computer that 'grows as it ... - Phys.Org [Last Updated On: March 2nd, 2017] [Originally Added On: March 2nd, 2017]
- Andreas Antonopoulos: Bitcoin's Design Can Withstand Quantum Computer Attack - CryptoCoinsNews [Last Updated On: March 2nd, 2017] [Originally Added On: March 2nd, 2017]
- IBM QISKit Aims to Enable Cloud-basaed Quantum Computation - InfoQ.com [Last Updated On: March 11th, 2017] [Originally Added On: March 11th, 2017]
- Legacy of brilliant young scientist is a major leap in quantum ... - Phys.Org [Last Updated On: March 11th, 2017] [Originally Added On: March 11th, 2017]
- IBM Q is the first initiative to build commercial quantum computing systems - BetaNews [Last Updated On: March 11th, 2017] [Originally Added On: March 11th, 2017]
- IBM To Commercialize Quantum Computing - ADT Magazine [Last Updated On: March 11th, 2017] [Originally Added On: March 11th, 2017]
- Quantum computer learns to 'see' trees - Science Magazine [Last Updated On: March 11th, 2017] [Originally Added On: March 11th, 2017]
- David Deutsch and His Dream Machine - The New Yorker [Last Updated On: March 11th, 2017] [Originally Added On: March 11th, 2017]
- Quantum computers are here -- but what are they good for? - PCWorld [Last Updated On: March 18th, 2017] [Originally Added On: March 18th, 2017]
- IBM's first commercial quantum computer could shake-up chemistry ... - Chemistry World (subscription) [Last Updated On: March 18th, 2017] [Originally Added On: March 18th, 2017]
- Quantum computing takes a massive step forward thanks to ... - TechRadar [Last Updated On: March 18th, 2017] [Originally Added On: March 18th, 2017]
- Better than Quantum Computing: The EU Launches a Biocomputer ... - Labiotech.eu (blog) [Last Updated On: March 21st, 2017] [Originally Added On: March 21st, 2017]
- In a few years new Quantum computers from IBM, Google and Microsoft will accelerate breakthroughs in chemistry and ... - Next Big Future [Last Updated On: March 21st, 2017] [Originally Added On: March 21st, 2017]
- Research project successful: Volkswagen IT experts use quantum ... - Automotive World (press release) [Last Updated On: March 21st, 2017] [Originally Added On: March 21st, 2017]
- Rechargeable 'spin battery' promising for spintronics and quantum ... - Phys.Org [Last Updated On: April 22nd, 2017] [Originally Added On: April 22nd, 2017]
- The First Quantum Computer You Own Could Be Powered by a Time Crystal - Futurism [Last Updated On: April 22nd, 2017] [Originally Added On: April 22nd, 2017]
- Microsoft to double headcount of Sydney quantum computing lab ... - Computerworld Australia [Last Updated On: April 22nd, 2017] [Originally Added On: April 22nd, 2017]
- Could Time Crystals Hold The Key To Building The First Quantum Computer? - Wall Street Pit [Last Updated On: April 22nd, 2017] [Originally Added On: April 22nd, 2017]
- Microsoft boosts Aussie quantum computing team - ARN - ARNnet [Last Updated On: April 26th, 2017] [Originally Added On: April 26th, 2017]
- Will Google Be The First To Achieve Quantum Computing Supremacy? - Wall Street Pit [Last Updated On: April 26th, 2017] [Originally Added On: April 26th, 2017]
- Computing on the boundary between conventional and quantum - Electronics Weekly [Last Updated On: April 29th, 2017] [Originally Added On: April 29th, 2017]
- Beyond classical computing without fault-tolerance: Looking for the ... - Phys.Org [Last Updated On: April 30th, 2017] [Originally Added On: April 30th, 2017]
- Quantum Computing | D-Wave Systems [Last Updated On: April 30th, 2017] [Originally Added On: April 30th, 2017]
- quantum computer - WIRED [Last Updated On: April 30th, 2017] [Originally Added On: April 30th, 2017]
- World's First Quantum Computer Is Here - Wall Street Pit - Wall Street Pit [Last Updated On: May 7th, 2017] [Originally Added On: May 7th, 2017]
- China adds a quantum computer to high-performance computing arsenal - PCWorld [Last Updated On: May 7th, 2017] [Originally Added On: May 7th, 2017]
- The Quantum Computer Revolution Is Closer Than You May Think - National Review [Last Updated On: May 7th, 2017] [Originally Added On: May 7th, 2017]
- China builds five qubit quantum computer sampling and will scale to 20 qubits by end of this year and could any beat ... - Next Big Future [Last Updated On: May 7th, 2017] [Originally Added On: May 7th, 2017]
- Researchers seek to advance quantum computing - The Stanford Daily [Last Updated On: May 14th, 2017] [Originally Added On: May 14th, 2017]
- New Materials Could Make Quantum Computers More Practical - Tom's Hardware [Last Updated On: May 14th, 2017] [Originally Added On: May 14th, 2017]
- Nanofridge could keep quantum computers cool enough to calculate - New Scientist [Last Updated On: May 14th, 2017] [Originally Added On: May 14th, 2017]
- Home News Computer Europe Takes Quantum Computing to the Next Level With this Billion Euro... - TrendinTech [Last Updated On: May 14th, 2017] [Originally Added On: May 14th, 2017]
- Quantum Computing Demands a Whole New Kind of Programmer - Singularity Hub [Last Updated On: May 14th, 2017] [Originally Added On: May 14th, 2017]
- Refrigerator for quantum computers discovered - Science Daily [Last Updated On: May 14th, 2017] [Originally Added On: May 14th, 2017]
- Scientists Invent Nanoscale Refrigerator For Quantum Computers - Wall Street Pit [Last Updated On: May 14th, 2017] [Originally Added On: May 14th, 2017]
- IBM builds two new Quantum Computing processors - Enterprise Times [Last Updated On: May 18th, 2017] [Originally Added On: May 18th, 2017]
- Quantum Computers Sound Great, But Who's Going to Program Them? - TrendinTech [Last Updated On: May 18th, 2017] [Originally Added On: May 18th, 2017]
- IBM makes a leap in quantum computing power - PCWorld [Last Updated On: May 18th, 2017] [Originally Added On: May 18th, 2017]
- IBM's Newest Quantum Computing Processors Have Triple the Qubits of Their Last - Futurism [Last Updated On: May 19th, 2017] [Originally Added On: May 19th, 2017]
- IBM scientists demonstrate ballistic nanowire connections, a potential future key component for quantum computing - Phys.Org [Last Updated On: May 19th, 2017] [Originally Added On: May 19th, 2017]
- The route to high-speed quantum computing is paved with error | Ars ... - Ars Technica UK [Last Updated On: May 20th, 2017] [Originally Added On: May 20th, 2017]
- Researchers push forward quantum computing research - The ... - Economic Times [Last Updated On: May 22nd, 2017] [Originally Added On: May 22nd, 2017]
- US playing catch-up in quantum computing - The Register-Guard [Last Updated On: May 22nd, 2017] [Originally Added On: May 22nd, 2017]
- IBM Q Offers Quantum Computing as a Service The Merkle - The Merkle [Last Updated On: May 25th, 2017] [Originally Added On: May 25th, 2017]
- Graphene Just Brought Us One Step Closer to Practical Quantum Computers - Futurism [Last Updated On: May 25th, 2017] [Originally Added On: May 25th, 2017]
- How quantum computing increases cybersecurity risks | Network ... - Network World [Last Updated On: May 25th, 2017] [Originally Added On: May 25th, 2017]
- Is the US falling behind in the race for quantum computing? - AroundtheO [Last Updated On: May 25th, 2017] [Originally Added On: May 25th, 2017]
- Artificial intelligence and quantum computing aid cyber crime fight - Financial Times [Last Updated On: May 25th, 2017] [Originally Added On: May 25th, 2017]
- Google Plans to Demonstrate the Supremacy of Quantum ... - IEEE Spectrum [Last Updated On: May 25th, 2017] [Originally Added On: May 25th, 2017]
- Top 5: Things to know about quantum computers - TechRepublic [Last Updated On: May 25th, 2017] [Originally Added On: May 25th, 2017]
- AI and Quantum Computers Are Our Best Weapons Against Cyber Criminals - Futurism [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Scientists claim to have invented the world's first quantum-proof ... - ScienceAlert [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Microsoft, Purdue Tackle Topological Quantum Computer - HPCwire - HPCwire (blog) [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- MIT Just Unveiled A Technique to Mass Produce Quantum Computers - Futurism [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Here's How We Can Achieve Mass-Produced Quantum Computers - ScienceAlert [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Research collaborative pursues advanced quantum computing - Phys.Org [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Telstra just wants a quantum computer to offer as-a-service - ZDNet [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- D-Wave partners with U of T to move quantum computing along - Financial Post [Last Updated On: June 2nd, 2017] [Originally Added On: June 2nd, 2017]
- Doped Diamonds Push Practical Quantum Computing Closer to Reality - Motherboard [Last Updated On: June 3rd, 2017] [Originally Added On: June 3rd, 2017]
- Team develops first blockchain that can't be hacked by quantum computer - Siliconrepublic.com [Last Updated On: June 3rd, 2017] [Originally Added On: June 3rd, 2017]
- Are Enterprises Ready to Take a Quantum Leap? - IT Business Edge [Last Updated On: June 13th, 2017] [Originally Added On: June 13th, 2017]
- Scientists May Have Found a Way to Combat Quantum Computer Blockchain Hacking - Futurism [Last Updated On: June 13th, 2017] [Originally Added On: June 13th, 2017]
- Microsoft and Purdue work on scalable topological quantum computer - Next Big Future [Last Updated On: June 13th, 2017] [Originally Added On: June 13th, 2017]
- From the Abacus to Supercomputers to Quantum Computers - Duke Today [Last Updated On: June 13th, 2017] [Originally Added On: June 13th, 2017]
- Quantum Computers Will Analyze Every Financial Model at Once - Singularity Hub [Last Updated On: June 13th, 2017] [Originally Added On: June 13th, 2017]
- Quantum Computing Technologies markets will reach $10.7 billion by 2024 - PR Newswire (press release) [Last Updated On: June 14th, 2017] [Originally Added On: June 14th, 2017]
- KPN CISO details Quantum computing attack dangers - Mobile World Live [Last Updated On: June 16th, 2017] [Originally Added On: June 16th, 2017]
- Get ahead in quantum computing AND attract Goldman Sachs - eFinancialCareers [Last Updated On: June 16th, 2017] [Originally Added On: June 16th, 2017]
- Toward optical quantum computing - MIT News [Last Updated On: June 17th, 2017] [Originally Added On: June 17th, 2017]
- Quantum Machine Learning Computer Hybrids at the Center of New Start-Ups - TrendinTech [Last Updated On: June 20th, 2017] [Originally Added On: June 20th, 2017]
- Israel Enters Quantum Computer Race, Placing Encryption at Ever-Greater Risk - Sputnik International [Last Updated On: June 20th, 2017] [Originally Added On: June 20th, 2017]
- Prototype device enables photon-photon interactions at room ... - Phys.Org [Last Updated On: June 20th, 2017] [Originally Added On: June 20th, 2017]
- The Quantum Computer Factory That's Taking on Google and IBM - WIRED [Last Updated On: June 20th, 2017] [Originally Added On: June 20th, 2017]
- 6 Things Quantum Computers Will Be Incredibly Useful For - Singularity Hub [Last Updated On: July 1st, 2017] [Originally Added On: July 1st, 2017]
- Volkswagen buys D-Wave quantum computers which sell for $15 million each - Robotics and Automation News (press release) (registration) [Last Updated On: July 2nd, 2017] [Originally Added On: July 2nd, 2017]
- Less is more for Canadian quantum computing researchers - ITworld [Last Updated On: July 4th, 2017] [Originally Added On: July 4th, 2017]