Scientists have long dreamed of developing quantum computers, machines that rely on arcane laws of physics to perform tasks far beyond the capability of todays strongest supercomputers. In theory such a machine could create mathematical models too complex for standard computers, vastly extending the range and accuracy of weather forecasts and financial market predictions, among other things. They could simulate physical processes such as photosynthesis, opening new frontiers in green energy. Quantum computing could also jolt artificial intelligence to a vastly higher level of sophistication: If IBMs Watson can already win at Jeopardy! and make some medical diagnoses, imagine what an enormously smarter version could do.
But to realize those visions, scientists first have to figure out how to actually build a quantum computer that can perform more than the simplest operations. They are now getting closer than ever, with IBM in May announcing its most complex quantum system so far and Google saying it is on track this year to unveil a processor with so-called quantum supremacy capabilities no conventional computer can match.
Small systems exist, but the next steps in the race to make them bigger will have to determine whether quantum computers can deliver on their potential. Scientists and industry players have focused largely on one of two approaches. One cools loops of wire to near 273.15 degrees Celsius, or absolute zero, turning them into superconductors where current flows with virtually no resistance. The other relies on trapped ionscharged atoms of the rare earth element ytterbium held in place in a vacuum chamber by laser beams and manipulated by other lasers. The oscillating charges (in both the wires and the trapped ions) function as quantum bits, or qubits, which can be harnessed to carry out the computers operations.
Quantum leaps
The trick to either approach is figuring out how to get from already demonstrated systemscontaining just a few qubits to ones that can handle the hundreds or thousands required for the kind of heavy lifting that quantum technology seems to promise. Last year IBM made a five-qubit quantum processor available to developers, researchers and programmers for experimentation via its cloud portal. The company has made significant progress since then, revealing in May that it has upgraded its cloud-based quantum computer to a 16-qubit processorand created a more tightly engineered 17-qubit processor that could be the basis for commercial systems. Both are based on the wire-loop superconducting circuits, as is Googles 20-qubit processor, which the company announced at a conference in Munich, Germany, on June 22. Alan Ho, an engineer in Googles Quantum Artificial Intelligence Lab, told the conference his company expects to achieve quantum supremacy with a 49-qubit chip by the end of this year.
Those numbers may not seem impressive. But a qubit is much more powerful than the kind of bit that serves as the smallest unit of data in a conventional computer. Those bits are based on the flow of electrical current, and make up the digital language in which all computing functions: Off means 0 and on means 1, and those two states encode all of the computers operations. Qubits, however, are not based on yes/no electrical switchesbut rather on a particles quantum properties, such as the direction in which an electron spins. And in the quantum world a particle can simultaneously exist in a variety of states more complex than simply on/off a phenomenon known as superposition. You can have heads, you can have tails, but you can also have any weighted superposition. You can have 70-30 heads-tails, says Christopher Monroe, a physicist at the University of Maryland, College Park, and founder of IonQ, a start-up working on building a quantum computer with trapped ions.
The more-than-binary ability to occupy multiple states at once allows qubits to perform many calculations simultaneously, vastly magnifying their computing power. That power grows exponentially with the number of qubits. So at somewhere around 49 or 50 qubits, quantum computers reach the equivalent of about 10 quadrillion bits and become capable of calculations no classical computer could ever match, says John Preskill, a theoretical physicist at California Institute of Technology. Whether they will be doing useful things is a different question, he says.
Both superconducting circuits and trapped ions have a good shot at hitting that fiftyish-qubit threshold, says Jerry Chow, manager of experimental quantum computing at IBM T. J. Watson Research Center in Yorktown Heights, N.Y. Conventional thinking would suggest that more qubits means more power but Chow notes its not just about the number of qubits. He is more focused on the number and quality of calculations the machine can perform, a metric he calls quantum volume. That includes additional factors such as how fast the qubits can perform the calculations and how well they avoid or correct for errors that can creep in. Some of those factors can work against one another; adding more qubits, for instance, can increase the rate of errors as information passes down the line from one qubit to another. As a community we should all be focusingno matter whether were working on superconducting qubits or trapped ions or whatever on pushing this quantum volume higher and higher so we can really make more and more powerful quantum processors and do things that we never thought of, Chow says.
Better, not bigger
Monroe recently compared his five-qubit trapped ion system with IBMs five-qubit processor by running the same simple algorithms on both, and found the performance comparable. The biggest difference, he says, is that the trapped ions are all connected to one another via electromagnetic forces: Wiggle one ion in a string of 30 and every other ion reacts, making it easy to quickly and accurately pass information among them. In the wire-loop superconductor circuit only some qubits are connected, which makes passing information a slower process that can introduce errors.
One advantage of superconducting circuits is that they are easy to build using the same processes that make computer chips. They perform a computers basic logic gate operations that is, adding, subtracting or otherwise manipulating the bits in billionths of a second. On the other hand, qubits in this type of system hold their quantum state for only milliseconds thousandths of a second so any operation must be completed in that time.
Trapped ions, by contrast, retain their quantum states for many seconds sometimes even minutes or hours. But the logic gates in such a system run about 1,000 times slower than in superconductor-based quantum computing. That speed reduction probably does not matter in simple operations with just a few qubits, Monroe says. But it could become a problem for getting an answer in a reasonable amount of time as the number of qubits increases. For superconducting qubits, rising numbers may mean a struggle to connect them together.
And increasing the number of qubits, no matter what technology they are used with, makes it harder to connect and manipulate them because that must be done while keeping them isolated from the rest of the world so they will maintain their quantum states. The more atoms or electrons are grouped together in large numbers, the more the rules of classical physics take over and the less significant the quantum properties of the individual atoms become to how the whole system behaves. When you make a quantum system big, it becomes less quantum, Monroe says.
Chow thinks quantum computers will become powerful enough to do at least something beyond the capability of classical computers possibly a simulation in quantum chemistry within about five years. Monroe says it is reasonable to expect systems containing a few thousand qubits in a decade or so. To some extent, Monroe says, researchers will not know what they will be able to do with such systems until they figure out how to build them.
Preskill, who is 64, says he thinks he will live long enough to see quantum computers have an impact on society in the way the internet and smartphones have although he cannot predict exactly what that impact will be. These quantum systems kind of speak a language that digital systems dont speak, he says. We know from history that we just dont have the imagination to anticipate where new information technologies can carry us.
Read the original here:
Quantum computers compete for supremacy - Salon
- Two Quantum Computers Face-Off for the First Time in History! - Interesting Engineering [Last Updated On: February 26th, 2017] [Originally Added On: February 26th, 2017]
- Split decision in first-ever quantum computer faceoff | Science | AAAS - Science Magazine [Last Updated On: February 26th, 2017] [Originally Added On: February 26th, 2017]
- How to defend against quantum computing attacks - ScienceBlog.com - ScienceBlog.com (blog) [Last Updated On: February 28th, 2017] [Originally Added On: February 28th, 2017]
- Researchers Have Directly Tested Two Quantum Computing ... - Futurism [Last Updated On: February 28th, 2017] [Originally Added On: February 28th, 2017]
- Scientists reveal new super-fast form of computer that 'grows as it ... - Phys.Org [Last Updated On: March 2nd, 2017] [Originally Added On: March 2nd, 2017]
- Andreas Antonopoulos: Bitcoin's Design Can Withstand Quantum Computer Attack - CryptoCoinsNews [Last Updated On: March 2nd, 2017] [Originally Added On: March 2nd, 2017]
- IBM QISKit Aims to Enable Cloud-basaed Quantum Computation - InfoQ.com [Last Updated On: March 11th, 2017] [Originally Added On: March 11th, 2017]
- Legacy of brilliant young scientist is a major leap in quantum ... - Phys.Org [Last Updated On: March 11th, 2017] [Originally Added On: March 11th, 2017]
- IBM Q is the first initiative to build commercial quantum computing systems - BetaNews [Last Updated On: March 11th, 2017] [Originally Added On: March 11th, 2017]
- IBM To Commercialize Quantum Computing - ADT Magazine [Last Updated On: March 11th, 2017] [Originally Added On: March 11th, 2017]
- Quantum computer learns to 'see' trees - Science Magazine [Last Updated On: March 11th, 2017] [Originally Added On: March 11th, 2017]
- David Deutsch and His Dream Machine - The New Yorker [Last Updated On: March 11th, 2017] [Originally Added On: March 11th, 2017]
- Quantum computers are here -- but what are they good for? - PCWorld [Last Updated On: March 18th, 2017] [Originally Added On: March 18th, 2017]
- IBM's first commercial quantum computer could shake-up chemistry ... - Chemistry World (subscription) [Last Updated On: March 18th, 2017] [Originally Added On: March 18th, 2017]
- Quantum computing takes a massive step forward thanks to ... - TechRadar [Last Updated On: March 18th, 2017] [Originally Added On: March 18th, 2017]
- Better than Quantum Computing: The EU Launches a Biocomputer ... - Labiotech.eu (blog) [Last Updated On: March 21st, 2017] [Originally Added On: March 21st, 2017]
- In a few years new Quantum computers from IBM, Google and Microsoft will accelerate breakthroughs in chemistry and ... - Next Big Future [Last Updated On: March 21st, 2017] [Originally Added On: March 21st, 2017]
- Research project successful: Volkswagen IT experts use quantum ... - Automotive World (press release) [Last Updated On: March 21st, 2017] [Originally Added On: March 21st, 2017]
- Rechargeable 'spin battery' promising for spintronics and quantum ... - Phys.Org [Last Updated On: April 22nd, 2017] [Originally Added On: April 22nd, 2017]
- The First Quantum Computer You Own Could Be Powered by a Time Crystal - Futurism [Last Updated On: April 22nd, 2017] [Originally Added On: April 22nd, 2017]
- Microsoft to double headcount of Sydney quantum computing lab ... - Computerworld Australia [Last Updated On: April 22nd, 2017] [Originally Added On: April 22nd, 2017]
- Could Time Crystals Hold The Key To Building The First Quantum Computer? - Wall Street Pit [Last Updated On: April 22nd, 2017] [Originally Added On: April 22nd, 2017]
- Microsoft boosts Aussie quantum computing team - ARN - ARNnet [Last Updated On: April 26th, 2017] [Originally Added On: April 26th, 2017]
- Will Google Be The First To Achieve Quantum Computing Supremacy? - Wall Street Pit [Last Updated On: April 26th, 2017] [Originally Added On: April 26th, 2017]
- Computing on the boundary between conventional and quantum - Electronics Weekly [Last Updated On: April 29th, 2017] [Originally Added On: April 29th, 2017]
- Quantum cryptography - Wikipedia [Last Updated On: April 29th, 2017] [Originally Added On: April 29th, 2017]
- Beyond classical computing without fault-tolerance: Looking for the ... - Phys.Org [Last Updated On: April 30th, 2017] [Originally Added On: April 30th, 2017]
- Quantum Computing | D-Wave Systems [Last Updated On: April 30th, 2017] [Originally Added On: April 30th, 2017]
- quantum computer - WIRED [Last Updated On: April 30th, 2017] [Originally Added On: April 30th, 2017]
- World's First Quantum Computer Is Here - Wall Street Pit - Wall Street Pit [Last Updated On: May 7th, 2017] [Originally Added On: May 7th, 2017]
- China adds a quantum computer to high-performance computing arsenal - PCWorld [Last Updated On: May 7th, 2017] [Originally Added On: May 7th, 2017]
- The Quantum Computer Revolution Is Closer Than You May Think - National Review [Last Updated On: May 7th, 2017] [Originally Added On: May 7th, 2017]
- China builds five qubit quantum computer sampling and will scale to 20 qubits by end of this year and could any beat ... - Next Big Future [Last Updated On: May 7th, 2017] [Originally Added On: May 7th, 2017]
- Researchers seek to advance quantum computing - The Stanford Daily [Last Updated On: May 14th, 2017] [Originally Added On: May 14th, 2017]
- New Materials Could Make Quantum Computers More Practical - Tom's Hardware [Last Updated On: May 14th, 2017] [Originally Added On: May 14th, 2017]
- Nanofridge could keep quantum computers cool enough to calculate - New Scientist [Last Updated On: May 14th, 2017] [Originally Added On: May 14th, 2017]
- Home News Computer Europe Takes Quantum Computing to the Next Level With this Billion Euro... - TrendinTech [Last Updated On: May 14th, 2017] [Originally Added On: May 14th, 2017]
- Quantum Computing Demands a Whole New Kind of Programmer - Singularity Hub [Last Updated On: May 14th, 2017] [Originally Added On: May 14th, 2017]
- Refrigerator for quantum computers discovered - Science Daily [Last Updated On: May 14th, 2017] [Originally Added On: May 14th, 2017]
- Scientists Invent Nanoscale Refrigerator For Quantum Computers - Wall Street Pit [Last Updated On: May 14th, 2017] [Originally Added On: May 14th, 2017]
- IBM builds two new Quantum Computing processors - Enterprise Times [Last Updated On: May 18th, 2017] [Originally Added On: May 18th, 2017]
- Quantum Computers Sound Great, But Who's Going to Program Them? - TrendinTech [Last Updated On: May 18th, 2017] [Originally Added On: May 18th, 2017]
- IBM makes a leap in quantum computing power - PCWorld [Last Updated On: May 18th, 2017] [Originally Added On: May 18th, 2017]
- IBM's Newest Quantum Computing Processors Have Triple the Qubits of Their Last - Futurism [Last Updated On: May 19th, 2017] [Originally Added On: May 19th, 2017]
- IBM scientists demonstrate ballistic nanowire connections, a potential future key component for quantum computing - Phys.Org [Last Updated On: May 19th, 2017] [Originally Added On: May 19th, 2017]
- The route to high-speed quantum computing is paved with error | Ars ... - Ars Technica UK [Last Updated On: May 20th, 2017] [Originally Added On: May 20th, 2017]
- Researchers push forward quantum computing research - The ... - Economic Times [Last Updated On: May 22nd, 2017] [Originally Added On: May 22nd, 2017]
- US playing catch-up in quantum computing - The Register-Guard [Last Updated On: May 22nd, 2017] [Originally Added On: May 22nd, 2017]
- IBM Q Offers Quantum Computing as a Service The Merkle - The Merkle [Last Updated On: May 25th, 2017] [Originally Added On: May 25th, 2017]
- Graphene Just Brought Us One Step Closer to Practical Quantum Computers - Futurism [Last Updated On: May 25th, 2017] [Originally Added On: May 25th, 2017]
- How quantum computing increases cybersecurity risks | Network ... - Network World [Last Updated On: May 25th, 2017] [Originally Added On: May 25th, 2017]
- Is the US falling behind in the race for quantum computing? - AroundtheO [Last Updated On: May 25th, 2017] [Originally Added On: May 25th, 2017]
- Artificial intelligence and quantum computing aid cyber crime fight - Financial Times [Last Updated On: May 25th, 2017] [Originally Added On: May 25th, 2017]
- Google Plans to Demonstrate the Supremacy of Quantum ... - IEEE Spectrum [Last Updated On: May 25th, 2017] [Originally Added On: May 25th, 2017]
- Top 5: Things to know about quantum computers - TechRepublic [Last Updated On: May 25th, 2017] [Originally Added On: May 25th, 2017]
- AI and Quantum Computers Are Our Best Weapons Against Cyber Criminals - Futurism [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Scientists claim to have invented the world's first quantum-proof ... - ScienceAlert [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Microsoft, Purdue Tackle Topological Quantum Computer - HPCwire - HPCwire (blog) [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- MIT Just Unveiled A Technique to Mass Produce Quantum Computers - Futurism [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Here's How We Can Achieve Mass-Produced Quantum Computers - ScienceAlert [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Research collaborative pursues advanced quantum computing - Phys.Org [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Telstra just wants a quantum computer to offer as-a-service - ZDNet [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- D-Wave partners with U of T to move quantum computing along - Financial Post [Last Updated On: June 2nd, 2017] [Originally Added On: June 2nd, 2017]
- Doped Diamonds Push Practical Quantum Computing Closer to Reality - Motherboard [Last Updated On: June 3rd, 2017] [Originally Added On: June 3rd, 2017]
- Team develops first blockchain that can't be hacked by quantum computer - Siliconrepublic.com [Last Updated On: June 3rd, 2017] [Originally Added On: June 3rd, 2017]
- Are Enterprises Ready to Take a Quantum Leap? - IT Business Edge [Last Updated On: June 13th, 2017] [Originally Added On: June 13th, 2017]
- Scientists May Have Found a Way to Combat Quantum Computer Blockchain Hacking - Futurism [Last Updated On: June 13th, 2017] [Originally Added On: June 13th, 2017]
- Microsoft and Purdue work on scalable topological quantum computer - Next Big Future [Last Updated On: June 13th, 2017] [Originally Added On: June 13th, 2017]
- From the Abacus to Supercomputers to Quantum Computers - Duke Today [Last Updated On: June 13th, 2017] [Originally Added On: June 13th, 2017]
- Quantum Computers Will Analyze Every Financial Model at Once - Singularity Hub [Last Updated On: June 13th, 2017] [Originally Added On: June 13th, 2017]
- Quantum Computing Technologies markets will reach $10.7 billion by 2024 - PR Newswire (press release) [Last Updated On: June 14th, 2017] [Originally Added On: June 14th, 2017]
- KPN CISO details Quantum computing attack dangers - Mobile World Live [Last Updated On: June 16th, 2017] [Originally Added On: June 16th, 2017]
- Get ahead in quantum computing AND attract Goldman Sachs - eFinancialCareers [Last Updated On: June 16th, 2017] [Originally Added On: June 16th, 2017]
- Toward optical quantum computing - MIT News [Last Updated On: June 17th, 2017] [Originally Added On: June 17th, 2017]
- Quantum Machine Learning Computer Hybrids at the Center of New Start-Ups - TrendinTech [Last Updated On: June 20th, 2017] [Originally Added On: June 20th, 2017]
- Israel Enters Quantum Computer Race, Placing Encryption at Ever-Greater Risk - Sputnik International [Last Updated On: June 20th, 2017] [Originally Added On: June 20th, 2017]
- Prototype device enables photon-photon interactions at room ... - Phys.Org [Last Updated On: June 20th, 2017] [Originally Added On: June 20th, 2017]
- The Quantum Computer Factory That's Taking on Google and IBM - WIRED [Last Updated On: June 20th, 2017] [Originally Added On: June 20th, 2017]
- 6 Things Quantum Computers Will Be Incredibly Useful For - Singularity Hub [Last Updated On: July 1st, 2017] [Originally Added On: July 1st, 2017]
- Volkswagen buys D-Wave quantum computers which sell for $15 million each - Robotics and Automation News (press release) (registration) [Last Updated On: July 2nd, 2017] [Originally Added On: July 2nd, 2017]