Electrons inhabit a strange and topsy-turvy world. These infinitesimally small particles have never ceased to amaze and mystify despite the more than a century that scientists have studied them. Now, in an even more amazing twist, physicists have discovered that, under certain conditions, interacting electrons can create what are called topological quantum states. This finding, which was recently published in the journal Nature,holds great potential for revolutionizing electrical engineering, materials science and especially computer science.
Topological states of matter are particularly intriguing classes of quantum phenomena. Their study combines quantum physics with topology, which is the branch of theoretical mathematics that studies geometric properties that can be deformed but not intrinsically changed. Topological quantum states first came to the publics attention in 2016 when three scientists Princetons Duncan Haldane, who is Princetons Thomas D. Jones Professor of Mathematical Physics and Sherman Fairchild University Professor of Physics, together with David Thouless and Michael Kosterlitz were awarded the Nobel Prize for their work in uncovering the role of topology in electronic materials.
A Princeton-led team of physicists have discovered that, under certain conditions, interacting electrons can create what are called topological quantum states, which,has implications for many technological fields of study, especially information technology. To get the desired quantum effect, the researchersplaced two sheets of graphene on top of each other with the top layer twisted at the "magic" angle of 1.1 degrees, whichcreates a moir pattern. This diagram shows a scanning tunneling microscopeimaging the magic-angle twisted bilayer graphene.
Image courtesy of Kevin Nuckolls
The last decade has seen quite a lot of excitement about new topological quantum states of electrons, said Ali Yazdani, the Class of 1909 Professor of Physics at Princeton and the senior author of the study. Most of what we have uncovered in the last decade has been focused on how electrons get these topological properties, without thinking about them interacting with one another.
But by using a material known as magic-angle twisted bilayer graphene, Yazdani and his team were able to explore how interacting electrons can give rise to surprising phases of matter.
The remarkable properties of graphene were discovered two years ago when Pablo Jarillo-Herrero and his team at the Massachusetts Institute of Technology (MIT) used it to induce superconductivity a state in which electrons flow freely without any resistance. The discovery was immediately recognized as a new material platform for exploring unusual quantum phenomena.
Yazdani and his fellow researchers were intrigued by this discovery and set out to further explore the intricacies of superconductivity.
But what they discovered led them down a different and untrodden path.
This was a wonderful detour that came out of nowhere, said Kevin Nuckolls, the lead author of the paper and a graduate student in physics. It was totally unexpected, and something we noticed that was going to be important.
Following the example of Jarillo-Herrero and his team, Yazdani, Nuckolls and the other researchers focused their investigation on twisted bilayer graphene.
Its really a miracle material, Nuckolls said. Its a two-dimensional lattice of carbon atoms thats a great electrical conductor and is one of the strongest crystals known.
Graphene is produced in a deceptively simple but painstaking manner: a bulk crystal of graphite, the same pure graphite in pencils, is exfoliated using sticky tape to remove the top layers until finally reaching a single-atom-thin layer of carbon, with atoms arranged in a flat honeycomb lattice pattern.
To get the desired quantum effect, the Princeton researchers, following the work of Jarillo-Herrero, placed two sheets of graphene on top of each other with the top layer angled slightly. This twisting creates a moir pattern, which resembles and is named after a common French textile design. The important point, however, is the angle at which the top layer of graphene is positioned: precisely 1.1 degrees, the magic angle that produces the quantum effect.
Its such a weird glitch in nature, Nuckolls said, that it is exactly this one angle that needs to be achieved. Angling the top layer of graphene at 1.2 degrees, for example, produces no effect.
The researchers generated extremely low temperatures and created a slight magnetic field. They then used a machine called a scanning tunneling microscope, which relies on a technique called quantum tunneling rather than light to view the atomic and subatomic world. They directed the microscopes conductive metal tip on the surface of the magic-angle twisted graphene and were able to detect the energy levels of the electrons.
They found that the magic-angle graphene changed how electrons moved on the graphene sheet. It creates a condition which forces the electrons to be at the same energy, said Yazdani. We call this a flat band.
When electrons have the same energy are in a flat band material they interact with each other very strongly. This interplay can make electrons do many exotic things, Yazdani said.
One of these exotic things, the researchers discovered, was the creation of unexpected and spontaneous topological states.
This twisting of the graphene creates the right conditions to create a very strong interaction between electrons, Yazdani explained. And this interaction unexpectedly favors electrons to organize themselves into a series of topological quantum states.
The researchers discovered that the interaction between electrons creates topological insulators:unique devices that whose interiors do not conduct electricity but whose edges allow the continuous and unimpeded movement ofelectrons. This diagram depicts thedifferent insulating states of the magic-angle graphene, each characterized by an integer called its Chern number, which distinguishes between different topological phases.
Image courtesy of Kevin Nuckolls
Specifically, they discovered that the interaction between electrons creates what are called topological insulators. These are unique devices that act as insulators in their interiors, which means that the electrons inside are not free to move around and therefore do not conduct electricity. However, the electrons on the edges are free to move around, meaning they are conductive. Moreover, because of the special properties of topology, the electrons flowing along the edges are not hampered by any defects or deformations. They flow continuously and effectively circumvent the constraints such as minute imperfections in a materials surface that typically impede the movement of electrons.
During the course of the work, Yazdanis experimental group teamed up two other Princetonians Andrei Bernevig, professor of physics, and Biao Lian, assistant professor of physics to understand the underlying physical mechanism for their findings.
Our theory shows that two important ingredients interactions and topology which in nature mostly appear decoupled from each other, combine in this system, Bernevig said. This coupling creates the topological insulator states that were observed experimentally.
Although the field of quantum topology is relatively new, itcouldtransform computer science. People talk a lot about its relevance to quantum computing, where you can use these topological quantum states to make better types of quantum bits, Yazdani said. The motivation for what were trying to do is to understand how quantum information can be encoded inside a topological phase. Research in this area is producing exciting new science and can have potential impact in advancing quantum information technologies.
Yazdani and his team will continue their research into understanding how the interactions of electrons give rise to different topological states.
The interplay between the topology and superconductivity in this material system is quite fascinating and is something we will try to understand next, Yazdani said.
In addition to Yazdani, Nuckolls, Bernevig and Lian, contributors to the study included co-first authors Myungchul Oh and Dillon Wong, postdoctoral research associates, as well as Kenji Watanabe and Takashi Taniguchi of the National Institute for Material Science in Japan.
Strongly Correlated Chern Insulators in Magic-Angle Twisted Bilayer Graphene, by Kevin P. Nuckolls, Myungchul Oh, Dillon Wong, Biao Lian, Kenji Watanabe, Takashi Taniguchi, B. Andrei Bernevig and Ali Yazdani, was published Dec. 14 in the journal Nature (DOI:10.1038/s41586-020-3028-8). This work was primarily supported by the Gordon and Betty Moore Foundations EPiQS initiative (GBMF4530, GBMF9469) and the Department of Energy (DE-FG02-07ER46419 and DE-SC0016239). Other support for the experimental work was provided by the National Science Foundation (Materials Research Science and Engineering Centers through the Princeton Center for Complex Materials (NSF-DMR-1420541, NSF-DMR-1904442) and EAGER DMR-1643312), ExxonMobil through the Andlinger Center for Energy and the Environment at Princeton, the Princeton Catalysis Initiative, the Elemental Strategy Initiative conducted by Japans Ministry of Education, Culture, Sports, Science and Technology (JPMXP0112101001, JSPS KAKENHI grant JP20H0035, and CREST JPMJCR15F3), the Princeton Center for Theoretical Science at Princeton University, the Simons Foundation, the Packard Foundation, the Schmidt Fund for Innovative Research, BSF Israel US foundation (2018226), the Office of Naval Research (N00014-20-1-2303) and the Princeton Global Network Funds.
Read the original post:
'Magic' angle graphene and the creation of unexpected topological quantum states - Princeton University
- Two Quantum Computers Face-Off for the First Time in History! - Interesting Engineering [Last Updated On: February 26th, 2017] [Originally Added On: February 26th, 2017]
- Split decision in first-ever quantum computer faceoff | Science | AAAS - Science Magazine [Last Updated On: February 26th, 2017] [Originally Added On: February 26th, 2017]
- How to defend against quantum computing attacks - ScienceBlog.com - ScienceBlog.com (blog) [Last Updated On: February 28th, 2017] [Originally Added On: February 28th, 2017]
- Researchers Have Directly Tested Two Quantum Computing ... - Futurism [Last Updated On: February 28th, 2017] [Originally Added On: February 28th, 2017]
- Scientists reveal new super-fast form of computer that 'grows as it ... - Phys.Org [Last Updated On: March 2nd, 2017] [Originally Added On: March 2nd, 2017]
- Andreas Antonopoulos: Bitcoin's Design Can Withstand Quantum Computer Attack - CryptoCoinsNews [Last Updated On: March 2nd, 2017] [Originally Added On: March 2nd, 2017]
- IBM QISKit Aims to Enable Cloud-basaed Quantum Computation - InfoQ.com [Last Updated On: March 11th, 2017] [Originally Added On: March 11th, 2017]
- Legacy of brilliant young scientist is a major leap in quantum ... - Phys.Org [Last Updated On: March 11th, 2017] [Originally Added On: March 11th, 2017]
- IBM Q is the first initiative to build commercial quantum computing systems - BetaNews [Last Updated On: March 11th, 2017] [Originally Added On: March 11th, 2017]
- IBM To Commercialize Quantum Computing - ADT Magazine [Last Updated On: March 11th, 2017] [Originally Added On: March 11th, 2017]
- Quantum computer learns to 'see' trees - Science Magazine [Last Updated On: March 11th, 2017] [Originally Added On: March 11th, 2017]
- David Deutsch and His Dream Machine - The New Yorker [Last Updated On: March 11th, 2017] [Originally Added On: March 11th, 2017]
- Quantum computers are here -- but what are they good for? - PCWorld [Last Updated On: March 18th, 2017] [Originally Added On: March 18th, 2017]
- IBM's first commercial quantum computer could shake-up chemistry ... - Chemistry World (subscription) [Last Updated On: March 18th, 2017] [Originally Added On: March 18th, 2017]
- Quantum computing takes a massive step forward thanks to ... - TechRadar [Last Updated On: March 18th, 2017] [Originally Added On: March 18th, 2017]
- Better than Quantum Computing: The EU Launches a Biocomputer ... - Labiotech.eu (blog) [Last Updated On: March 21st, 2017] [Originally Added On: March 21st, 2017]
- In a few years new Quantum computers from IBM, Google and Microsoft will accelerate breakthroughs in chemistry and ... - Next Big Future [Last Updated On: March 21st, 2017] [Originally Added On: March 21st, 2017]
- Research project successful: Volkswagen IT experts use quantum ... - Automotive World (press release) [Last Updated On: March 21st, 2017] [Originally Added On: March 21st, 2017]
- Rechargeable 'spin battery' promising for spintronics and quantum ... - Phys.Org [Last Updated On: April 22nd, 2017] [Originally Added On: April 22nd, 2017]
- The First Quantum Computer You Own Could Be Powered by a Time Crystal - Futurism [Last Updated On: April 22nd, 2017] [Originally Added On: April 22nd, 2017]
- Microsoft to double headcount of Sydney quantum computing lab ... - Computerworld Australia [Last Updated On: April 22nd, 2017] [Originally Added On: April 22nd, 2017]
- Could Time Crystals Hold The Key To Building The First Quantum Computer? - Wall Street Pit [Last Updated On: April 22nd, 2017] [Originally Added On: April 22nd, 2017]
- Microsoft boosts Aussie quantum computing team - ARN - ARNnet [Last Updated On: April 26th, 2017] [Originally Added On: April 26th, 2017]
- Will Google Be The First To Achieve Quantum Computing Supremacy? - Wall Street Pit [Last Updated On: April 26th, 2017] [Originally Added On: April 26th, 2017]
- Computing on the boundary between conventional and quantum - Electronics Weekly [Last Updated On: April 29th, 2017] [Originally Added On: April 29th, 2017]
- Quantum cryptography - Wikipedia [Last Updated On: April 29th, 2017] [Originally Added On: April 29th, 2017]
- Beyond classical computing without fault-tolerance: Looking for the ... - Phys.Org [Last Updated On: April 30th, 2017] [Originally Added On: April 30th, 2017]
- Quantum Computing | D-Wave Systems [Last Updated On: April 30th, 2017] [Originally Added On: April 30th, 2017]
- quantum computer - WIRED [Last Updated On: April 30th, 2017] [Originally Added On: April 30th, 2017]
- World's First Quantum Computer Is Here - Wall Street Pit - Wall Street Pit [Last Updated On: May 7th, 2017] [Originally Added On: May 7th, 2017]
- China adds a quantum computer to high-performance computing arsenal - PCWorld [Last Updated On: May 7th, 2017] [Originally Added On: May 7th, 2017]
- The Quantum Computer Revolution Is Closer Than You May Think - National Review [Last Updated On: May 7th, 2017] [Originally Added On: May 7th, 2017]
- China builds five qubit quantum computer sampling and will scale to 20 qubits by end of this year and could any beat ... - Next Big Future [Last Updated On: May 7th, 2017] [Originally Added On: May 7th, 2017]
- Researchers seek to advance quantum computing - The Stanford Daily [Last Updated On: May 14th, 2017] [Originally Added On: May 14th, 2017]
- New Materials Could Make Quantum Computers More Practical - Tom's Hardware [Last Updated On: May 14th, 2017] [Originally Added On: May 14th, 2017]
- Nanofridge could keep quantum computers cool enough to calculate - New Scientist [Last Updated On: May 14th, 2017] [Originally Added On: May 14th, 2017]
- Home News Computer Europe Takes Quantum Computing to the Next Level With this Billion Euro... - TrendinTech [Last Updated On: May 14th, 2017] [Originally Added On: May 14th, 2017]
- Quantum Computing Demands a Whole New Kind of Programmer - Singularity Hub [Last Updated On: May 14th, 2017] [Originally Added On: May 14th, 2017]
- Refrigerator for quantum computers discovered - Science Daily [Last Updated On: May 14th, 2017] [Originally Added On: May 14th, 2017]
- Scientists Invent Nanoscale Refrigerator For Quantum Computers - Wall Street Pit [Last Updated On: May 14th, 2017] [Originally Added On: May 14th, 2017]
- IBM builds two new Quantum Computing processors - Enterprise Times [Last Updated On: May 18th, 2017] [Originally Added On: May 18th, 2017]
- Quantum Computers Sound Great, But Who's Going to Program Them? - TrendinTech [Last Updated On: May 18th, 2017] [Originally Added On: May 18th, 2017]
- IBM makes a leap in quantum computing power - PCWorld [Last Updated On: May 18th, 2017] [Originally Added On: May 18th, 2017]
- IBM's Newest Quantum Computing Processors Have Triple the Qubits of Their Last - Futurism [Last Updated On: May 19th, 2017] [Originally Added On: May 19th, 2017]
- IBM scientists demonstrate ballistic nanowire connections, a potential future key component for quantum computing - Phys.Org [Last Updated On: May 19th, 2017] [Originally Added On: May 19th, 2017]
- The route to high-speed quantum computing is paved with error | Ars ... - Ars Technica UK [Last Updated On: May 20th, 2017] [Originally Added On: May 20th, 2017]
- Researchers push forward quantum computing research - The ... - Economic Times [Last Updated On: May 22nd, 2017] [Originally Added On: May 22nd, 2017]
- US playing catch-up in quantum computing - The Register-Guard [Last Updated On: May 22nd, 2017] [Originally Added On: May 22nd, 2017]
- IBM Q Offers Quantum Computing as a Service The Merkle - The Merkle [Last Updated On: May 25th, 2017] [Originally Added On: May 25th, 2017]
- Graphene Just Brought Us One Step Closer to Practical Quantum Computers - Futurism [Last Updated On: May 25th, 2017] [Originally Added On: May 25th, 2017]
- How quantum computing increases cybersecurity risks | Network ... - Network World [Last Updated On: May 25th, 2017] [Originally Added On: May 25th, 2017]
- Is the US falling behind in the race for quantum computing? - AroundtheO [Last Updated On: May 25th, 2017] [Originally Added On: May 25th, 2017]
- Artificial intelligence and quantum computing aid cyber crime fight - Financial Times [Last Updated On: May 25th, 2017] [Originally Added On: May 25th, 2017]
- Google Plans to Demonstrate the Supremacy of Quantum ... - IEEE Spectrum [Last Updated On: May 25th, 2017] [Originally Added On: May 25th, 2017]
- Top 5: Things to know about quantum computers - TechRepublic [Last Updated On: May 25th, 2017] [Originally Added On: May 25th, 2017]
- AI and Quantum Computers Are Our Best Weapons Against Cyber Criminals - Futurism [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Scientists claim to have invented the world's first quantum-proof ... - ScienceAlert [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Microsoft, Purdue Tackle Topological Quantum Computer - HPCwire - HPCwire (blog) [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- MIT Just Unveiled A Technique to Mass Produce Quantum Computers - Futurism [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Here's How We Can Achieve Mass-Produced Quantum Computers - ScienceAlert [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Research collaborative pursues advanced quantum computing - Phys.Org [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Telstra just wants a quantum computer to offer as-a-service - ZDNet [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- D-Wave partners with U of T to move quantum computing along - Financial Post [Last Updated On: June 2nd, 2017] [Originally Added On: June 2nd, 2017]
- Doped Diamonds Push Practical Quantum Computing Closer to Reality - Motherboard [Last Updated On: June 3rd, 2017] [Originally Added On: June 3rd, 2017]
- Team develops first blockchain that can't be hacked by quantum computer - Siliconrepublic.com [Last Updated On: June 3rd, 2017] [Originally Added On: June 3rd, 2017]
- Are Enterprises Ready to Take a Quantum Leap? - IT Business Edge [Last Updated On: June 13th, 2017] [Originally Added On: June 13th, 2017]
- Scientists May Have Found a Way to Combat Quantum Computer Blockchain Hacking - Futurism [Last Updated On: June 13th, 2017] [Originally Added On: June 13th, 2017]
- Microsoft and Purdue work on scalable topological quantum computer - Next Big Future [Last Updated On: June 13th, 2017] [Originally Added On: June 13th, 2017]
- From the Abacus to Supercomputers to Quantum Computers - Duke Today [Last Updated On: June 13th, 2017] [Originally Added On: June 13th, 2017]
- Quantum Computers Will Analyze Every Financial Model at Once - Singularity Hub [Last Updated On: June 13th, 2017] [Originally Added On: June 13th, 2017]
- Quantum Computing Technologies markets will reach $10.7 billion by 2024 - PR Newswire (press release) [Last Updated On: June 14th, 2017] [Originally Added On: June 14th, 2017]
- KPN CISO details Quantum computing attack dangers - Mobile World Live [Last Updated On: June 16th, 2017] [Originally Added On: June 16th, 2017]
- Get ahead in quantum computing AND attract Goldman Sachs - eFinancialCareers [Last Updated On: June 16th, 2017] [Originally Added On: June 16th, 2017]
- Toward optical quantum computing - MIT News [Last Updated On: June 17th, 2017] [Originally Added On: June 17th, 2017]
- Quantum Machine Learning Computer Hybrids at the Center of New Start-Ups - TrendinTech [Last Updated On: June 20th, 2017] [Originally Added On: June 20th, 2017]
- Israel Enters Quantum Computer Race, Placing Encryption at Ever-Greater Risk - Sputnik International [Last Updated On: June 20th, 2017] [Originally Added On: June 20th, 2017]
- Prototype device enables photon-photon interactions at room ... - Phys.Org [Last Updated On: June 20th, 2017] [Originally Added On: June 20th, 2017]
- The Quantum Computer Factory That's Taking on Google and IBM - WIRED [Last Updated On: June 20th, 2017] [Originally Added On: June 20th, 2017]
- 6 Things Quantum Computers Will Be Incredibly Useful For - Singularity Hub [Last Updated On: July 1st, 2017] [Originally Added On: July 1st, 2017]
- Volkswagen buys D-Wave quantum computers which sell for $15 million each - Robotics and Automation News (press release) (registration) [Last Updated On: July 2nd, 2017] [Originally Added On: July 2nd, 2017]