WebAssembly has come a long way from the browser; it can be used for building high-performance web applications, for serverless applications, and for many other uses.
Recently, we also spotted it as a key technology used in creating and controlling a previously theoretical state of matter that could unlock reliable quantum computing for the same reasons that make it an appealing choice for cloud computing.
Quantum computing uses exotic hardware (large, expensive and very, very cold) to model complex systems and problems that need more memory than the largest supercomputer: it stores information in equally exotic quantum states of matter and runs computations on it by controlling the interactions of subatomic particles.
But alongside that futuristic quantum computer, you need traditional computing resources to feed data into the quantum system, to get the results back from it and to manage the state of the qubits to deal with errors in those fragile quantum states.
As Dr. Krysta Svore, the researcher heading the team building the software stack for Microsofts quantum computing project, put it in a recent discussion of hybrid quantum computing, We need 10 to 100 terabytes a second bandwidth to keep the quantum machine alive in conjunction with a classical petascale supercomputer operating alongside the quantum computer: it needs to have this very regular 10 microsecond back and forth feedback loop to keep the quantum computer yielding a reliable solution.
Qubits can be affected by whats around them and lose their state in microseconds, so the control system has to be fast enough to measure the quantum circuit while its operating (thats called a mid-circuit measurement), find any errors and decide how to fix them and send that information back to control the quantum system.
Those qubits may need to remain alive and remain coherent while you go do classical compute, Svore explained. The longer that delay, the more theyre decohering, the more noise that is getting applied to them and thus the more work you might have to do to keep them stable and alive.
There are different kinds of exotic hardware in quantum computers and you have a little more time to work with a trapped-ion quantum computer like the Quantinuum System Model H2, which will be available through the Azure Quantum service in June.
That extra time means the algorithms that handle the quantum error correction can be more sophisticated, and WebAssembly is the ideal choice for building them Pete Campora, a quantum compiler engineer at Quantinuum, told the New Stack.
Over the last few years, Quantinuum has used WebAssembly (WASM) as part of the control system for increasingly powerful quantum computers, going from just demonstrating that real-time quantum error correction is possible to experimenting with different error correction approaches and, most recently, creating and manipulating for the first time the exotic entangled quantum states (called non-Abelian anyons) that could be the basis of fault-tolerant quantum computing.
Move one of these quasiparticles around another like braiding strings and they store that sequence of movements in their internal state, forming whats called a topological qubit thats much more error resistant than other types of qubit.
At least, thats the theory: and WebAssembly is proving to be a key part of proving it will work which still needs error correction on todays quantum computers.
Were using WebAssembly in the middle of quantum circuit execution, Campora explained. The control system software is preparing quantum states, doing some mid-circuit measurements, taking those mid-circuit measurements, maybe doing a little bit of classical calculation in the control system software and then passing those values to the WebAssembly environment.
In cloud, developers are used to picking the virtual machine with the right specs or choosing the right accelerator for a workload.
Rather than picking from fixed specs, quantum programming can require you to define the setup of your quantum hardware, describing the quantum circuit that will be formed by the qubits and as well as the algorithm that will run on it and error-correcting the qubits while the job is running with a language like OpenQASM (Open Quantum Assembly Language); thats rather like controlling an FPGA with a hardware description language like Verilog.
You cant measure a qubit to check for errors directly while its working or youd end the computation too soon, but you can measure an extra qubit (called an ancilla because its used to store partial results) and extrapolate the state of the working qubit from that.
What you get is a pattern of measurements called a syndrome. In medicine, a syndrome is a pattern of symptoms used to diagnose a complicated medical condition like fibromyalgia. In quantum computing, you have to diagnose or decode qubit errors from the pattern of measurements, using an algorithm that can also decide what needs to be done to reverse the errors and stop the quantum information in the qubits from decohering before the quantum computer finishes running the program.
OpenQASM is good for basic integer calculation, but it requires a lot of expertise to write that code: Theres a lot more boilerplate than if you just call out to a nice function in WASM.
Writing the algorithmic decoder that uses those qubit measurements to work out what the most likely error is and how to correct it in C, C++ or Rust and compiling it to WebAssembly makes it more accessible and lets the quantum engineers use more complex data structures like vectors, arrays, tuples and other ways to pass data between different functions to write more sophisticated algorithms that deliver more effective quantum error correction.
An algorithmic decoder is going to require data structures beyond what you would reasonably try to represent with just integers in the control system: it just doesnt make sense, Campora said. The WASM environment does a lot of the heavy lifting of mutating data structures and doing these more complex algorithms. It even does things like dynamic allocation that normally youd want to avoid in control system software due to timing requirements and being real time. So, the Rust programmer can take advantage of Rust crates for representing graphs and doing graph algorithms and dynamically adding these nodes into a graph.
The first algorithmic decoder the Quantinuum team created in Rust and compiled to WASM was fairly simple: You had global arrays or dictionaries that mapped your sequence of syndromes to a result.The data structures used in the most recent paper are more complex and quantum engineers are using much more sophisticated algorithms like graph traversal and Dijkstras [shortest path] algorithm. Its really interesting to see our quantum error correction researchers push the kinds of things that they can write using this environment.
Enabling software thats powerful enough to handle different approaches to quantum error correction makes it much faster and more accessible for researchers to experiment than if they had to make custom hardware each time, or even reprogram an FPGA, especially for those with a background in theoretical physics (with the support of the quantum compiler team if necessary). Its portable, and you can generate it from different languages, so that frees people up to pick whatever language and software that can compile to WASM thats good for their application.
Its definitely a much easier time for them to get spun up trying to think about compiling Rust to WebAssembly versus them having to try and program an FPGA or work with someone else and describe their algorithms. This really allows them to just go and think about how theyre going to do it themselves, Campora said.
With researchers writing their own code to control a complex and expensive quantum system, protecting that system from potentially problematic code is important and thats a key strength of WebAssembly, Campora noted. We dont have to worry about the security concerns of people submitting relatively arbitrary code, because the sandbox enforces memory safety guarantees and basically isolates you from certain OS processes as well.
Developing quantum computing takes the expertise of multiple disciplines and both commercial and academic researchers, so there are the usual security questions around code from different sources. One of the goals with this environment is that, because its software, external researchers that were collaborating with can write their algorithms for doing things like decoders for quantum error correction and can easily tweak them in their programming language and resubmit and keep re-evaluating the data.
A language like Portable C could do the computation, but then you lose all of those safety guarantees, Campora pointed out. A lot of the compilation tooling is really good about letting you know that youre doing something that would require you to break out of the sandbox.
WebAssembly restricts what a potentially malicious or inexpert user could do that might damage the system but also allows system owners to offer more capabilities to users who need them, using WASI the WebAssembly System Interface that standardizes access to features and services that arent in the WASM sandbox.
I like the way WASI can allow you, in a more fine-grained way, to opt into a few more things that would normally be considered breaking the sandbox. It gives you control. If somebody comes up to you with a reasonable request that that would be useful for, say, random number generation we can look into adding WASI support so that we can unblock them, but by default, theyre sandboxed away from OS things.
In the end, esoteric as the work is, the appeal of WebAssembly for quantum computing error correction is very much what makes it so useful in so many areas.
The web part of the name is almost unfortunate in certain ways, Camora noted, because its really this generic virtual machine-stack machine-sandbox, so it can be used for a variety of domains. If you have those sandboxing needs, its really a great target for you to get some safety guarantees and still allows people to submit code to it.
The rest is here:
How WASM (and Rust) Unlocks the Mysteries of Quantum Computing - The New Stack
- Two Quantum Computers Face-Off for the First Time in History! - Interesting Engineering [Last Updated On: February 26th, 2017] [Originally Added On: February 26th, 2017]
- Split decision in first-ever quantum computer faceoff | Science | AAAS - Science Magazine [Last Updated On: February 26th, 2017] [Originally Added On: February 26th, 2017]
- How to defend against quantum computing attacks - ScienceBlog.com - ScienceBlog.com (blog) [Last Updated On: February 28th, 2017] [Originally Added On: February 28th, 2017]
- Researchers Have Directly Tested Two Quantum Computing ... - Futurism [Last Updated On: February 28th, 2017] [Originally Added On: February 28th, 2017]
- Scientists reveal new super-fast form of computer that 'grows as it ... - Phys.Org [Last Updated On: March 2nd, 2017] [Originally Added On: March 2nd, 2017]
- Andreas Antonopoulos: Bitcoin's Design Can Withstand Quantum Computer Attack - CryptoCoinsNews [Last Updated On: March 2nd, 2017] [Originally Added On: March 2nd, 2017]
- IBM QISKit Aims to Enable Cloud-basaed Quantum Computation - InfoQ.com [Last Updated On: March 11th, 2017] [Originally Added On: March 11th, 2017]
- Legacy of brilliant young scientist is a major leap in quantum ... - Phys.Org [Last Updated On: March 11th, 2017] [Originally Added On: March 11th, 2017]
- IBM Q is the first initiative to build commercial quantum computing systems - BetaNews [Last Updated On: March 11th, 2017] [Originally Added On: March 11th, 2017]
- IBM To Commercialize Quantum Computing - ADT Magazine [Last Updated On: March 11th, 2017] [Originally Added On: March 11th, 2017]
- Quantum computer learns to 'see' trees - Science Magazine [Last Updated On: March 11th, 2017] [Originally Added On: March 11th, 2017]
- David Deutsch and His Dream Machine - The New Yorker [Last Updated On: March 11th, 2017] [Originally Added On: March 11th, 2017]
- Quantum computers are here -- but what are they good for? - PCWorld [Last Updated On: March 18th, 2017] [Originally Added On: March 18th, 2017]
- IBM's first commercial quantum computer could shake-up chemistry ... - Chemistry World (subscription) [Last Updated On: March 18th, 2017] [Originally Added On: March 18th, 2017]
- Quantum computing takes a massive step forward thanks to ... - TechRadar [Last Updated On: March 18th, 2017] [Originally Added On: March 18th, 2017]
- Better than Quantum Computing: The EU Launches a Biocomputer ... - Labiotech.eu (blog) [Last Updated On: March 21st, 2017] [Originally Added On: March 21st, 2017]
- In a few years new Quantum computers from IBM, Google and Microsoft will accelerate breakthroughs in chemistry and ... - Next Big Future [Last Updated On: March 21st, 2017] [Originally Added On: March 21st, 2017]
- Research project successful: Volkswagen IT experts use quantum ... - Automotive World (press release) [Last Updated On: March 21st, 2017] [Originally Added On: March 21st, 2017]
- Rechargeable 'spin battery' promising for spintronics and quantum ... - Phys.Org [Last Updated On: April 22nd, 2017] [Originally Added On: April 22nd, 2017]
- The First Quantum Computer You Own Could Be Powered by a Time Crystal - Futurism [Last Updated On: April 22nd, 2017] [Originally Added On: April 22nd, 2017]
- Microsoft to double headcount of Sydney quantum computing lab ... - Computerworld Australia [Last Updated On: April 22nd, 2017] [Originally Added On: April 22nd, 2017]
- Could Time Crystals Hold The Key To Building The First Quantum Computer? - Wall Street Pit [Last Updated On: April 22nd, 2017] [Originally Added On: April 22nd, 2017]
- Microsoft boosts Aussie quantum computing team - ARN - ARNnet [Last Updated On: April 26th, 2017] [Originally Added On: April 26th, 2017]
- Will Google Be The First To Achieve Quantum Computing Supremacy? - Wall Street Pit [Last Updated On: April 26th, 2017] [Originally Added On: April 26th, 2017]
- Computing on the boundary between conventional and quantum - Electronics Weekly [Last Updated On: April 29th, 2017] [Originally Added On: April 29th, 2017]
- Quantum cryptography - Wikipedia [Last Updated On: April 29th, 2017] [Originally Added On: April 29th, 2017]
- Beyond classical computing without fault-tolerance: Looking for the ... - Phys.Org [Last Updated On: April 30th, 2017] [Originally Added On: April 30th, 2017]
- Quantum Computing | D-Wave Systems [Last Updated On: April 30th, 2017] [Originally Added On: April 30th, 2017]
- quantum computer - WIRED [Last Updated On: April 30th, 2017] [Originally Added On: April 30th, 2017]
- World's First Quantum Computer Is Here - Wall Street Pit - Wall Street Pit [Last Updated On: May 7th, 2017] [Originally Added On: May 7th, 2017]
- China adds a quantum computer to high-performance computing arsenal - PCWorld [Last Updated On: May 7th, 2017] [Originally Added On: May 7th, 2017]
- The Quantum Computer Revolution Is Closer Than You May Think - National Review [Last Updated On: May 7th, 2017] [Originally Added On: May 7th, 2017]
- China builds five qubit quantum computer sampling and will scale to 20 qubits by end of this year and could any beat ... - Next Big Future [Last Updated On: May 7th, 2017] [Originally Added On: May 7th, 2017]
- Researchers seek to advance quantum computing - The Stanford Daily [Last Updated On: May 14th, 2017] [Originally Added On: May 14th, 2017]
- New Materials Could Make Quantum Computers More Practical - Tom's Hardware [Last Updated On: May 14th, 2017] [Originally Added On: May 14th, 2017]
- Nanofridge could keep quantum computers cool enough to calculate - New Scientist [Last Updated On: May 14th, 2017] [Originally Added On: May 14th, 2017]
- Home News Computer Europe Takes Quantum Computing to the Next Level With this Billion Euro... - TrendinTech [Last Updated On: May 14th, 2017] [Originally Added On: May 14th, 2017]
- Quantum Computing Demands a Whole New Kind of Programmer - Singularity Hub [Last Updated On: May 14th, 2017] [Originally Added On: May 14th, 2017]
- Refrigerator for quantum computers discovered - Science Daily [Last Updated On: May 14th, 2017] [Originally Added On: May 14th, 2017]
- Scientists Invent Nanoscale Refrigerator For Quantum Computers - Wall Street Pit [Last Updated On: May 14th, 2017] [Originally Added On: May 14th, 2017]
- IBM builds two new Quantum Computing processors - Enterprise Times [Last Updated On: May 18th, 2017] [Originally Added On: May 18th, 2017]
- Quantum Computers Sound Great, But Who's Going to Program Them? - TrendinTech [Last Updated On: May 18th, 2017] [Originally Added On: May 18th, 2017]
- IBM makes a leap in quantum computing power - PCWorld [Last Updated On: May 18th, 2017] [Originally Added On: May 18th, 2017]
- IBM's Newest Quantum Computing Processors Have Triple the Qubits of Their Last - Futurism [Last Updated On: May 19th, 2017] [Originally Added On: May 19th, 2017]
- IBM scientists demonstrate ballistic nanowire connections, a potential future key component for quantum computing - Phys.Org [Last Updated On: May 19th, 2017] [Originally Added On: May 19th, 2017]
- The route to high-speed quantum computing is paved with error | Ars ... - Ars Technica UK [Last Updated On: May 20th, 2017] [Originally Added On: May 20th, 2017]
- Researchers push forward quantum computing research - The ... - Economic Times [Last Updated On: May 22nd, 2017] [Originally Added On: May 22nd, 2017]
- US playing catch-up in quantum computing - The Register-Guard [Last Updated On: May 22nd, 2017] [Originally Added On: May 22nd, 2017]
- IBM Q Offers Quantum Computing as a Service The Merkle - The Merkle [Last Updated On: May 25th, 2017] [Originally Added On: May 25th, 2017]
- Graphene Just Brought Us One Step Closer to Practical Quantum Computers - Futurism [Last Updated On: May 25th, 2017] [Originally Added On: May 25th, 2017]
- How quantum computing increases cybersecurity risks | Network ... - Network World [Last Updated On: May 25th, 2017] [Originally Added On: May 25th, 2017]
- Is the US falling behind in the race for quantum computing? - AroundtheO [Last Updated On: May 25th, 2017] [Originally Added On: May 25th, 2017]
- Artificial intelligence and quantum computing aid cyber crime fight - Financial Times [Last Updated On: May 25th, 2017] [Originally Added On: May 25th, 2017]
- Google Plans to Demonstrate the Supremacy of Quantum ... - IEEE Spectrum [Last Updated On: May 25th, 2017] [Originally Added On: May 25th, 2017]
- Top 5: Things to know about quantum computers - TechRepublic [Last Updated On: May 25th, 2017] [Originally Added On: May 25th, 2017]
- AI and Quantum Computers Are Our Best Weapons Against Cyber Criminals - Futurism [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Scientists claim to have invented the world's first quantum-proof ... - ScienceAlert [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Microsoft, Purdue Tackle Topological Quantum Computer - HPCwire - HPCwire (blog) [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- MIT Just Unveiled A Technique to Mass Produce Quantum Computers - Futurism [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Here's How We Can Achieve Mass-Produced Quantum Computers - ScienceAlert [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Research collaborative pursues advanced quantum computing - Phys.Org [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Telstra just wants a quantum computer to offer as-a-service - ZDNet [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- D-Wave partners with U of T to move quantum computing along - Financial Post [Last Updated On: June 2nd, 2017] [Originally Added On: June 2nd, 2017]
- Doped Diamonds Push Practical Quantum Computing Closer to Reality - Motherboard [Last Updated On: June 3rd, 2017] [Originally Added On: June 3rd, 2017]
- Team develops first blockchain that can't be hacked by quantum computer - Siliconrepublic.com [Last Updated On: June 3rd, 2017] [Originally Added On: June 3rd, 2017]
- Are Enterprises Ready to Take a Quantum Leap? - IT Business Edge [Last Updated On: June 13th, 2017] [Originally Added On: June 13th, 2017]
- Scientists May Have Found a Way to Combat Quantum Computer Blockchain Hacking - Futurism [Last Updated On: June 13th, 2017] [Originally Added On: June 13th, 2017]
- Microsoft and Purdue work on scalable topological quantum computer - Next Big Future [Last Updated On: June 13th, 2017] [Originally Added On: June 13th, 2017]
- From the Abacus to Supercomputers to Quantum Computers - Duke Today [Last Updated On: June 13th, 2017] [Originally Added On: June 13th, 2017]
- Quantum Computers Will Analyze Every Financial Model at Once - Singularity Hub [Last Updated On: June 13th, 2017] [Originally Added On: June 13th, 2017]
- Quantum Computing Technologies markets will reach $10.7 billion by 2024 - PR Newswire (press release) [Last Updated On: June 14th, 2017] [Originally Added On: June 14th, 2017]
- KPN CISO details Quantum computing attack dangers - Mobile World Live [Last Updated On: June 16th, 2017] [Originally Added On: June 16th, 2017]
- Get ahead in quantum computing AND attract Goldman Sachs - eFinancialCareers [Last Updated On: June 16th, 2017] [Originally Added On: June 16th, 2017]
- Toward optical quantum computing - MIT News [Last Updated On: June 17th, 2017] [Originally Added On: June 17th, 2017]
- Quantum Machine Learning Computer Hybrids at the Center of New Start-Ups - TrendinTech [Last Updated On: June 20th, 2017] [Originally Added On: June 20th, 2017]
- Israel Enters Quantum Computer Race, Placing Encryption at Ever-Greater Risk - Sputnik International [Last Updated On: June 20th, 2017] [Originally Added On: June 20th, 2017]
- Prototype device enables photon-photon interactions at room ... - Phys.Org [Last Updated On: June 20th, 2017] [Originally Added On: June 20th, 2017]
- The Quantum Computer Factory That's Taking on Google and IBM - WIRED [Last Updated On: June 20th, 2017] [Originally Added On: June 20th, 2017]
- 6 Things Quantum Computers Will Be Incredibly Useful For - Singularity Hub [Last Updated On: July 1st, 2017] [Originally Added On: July 1st, 2017]
- Volkswagen buys D-Wave quantum computers which sell for $15 million each - Robotics and Automation News (press release) (registration) [Last Updated On: July 2nd, 2017] [Originally Added On: July 2nd, 2017]