An enigma machine on display outside the Alan Turing Institute entrance inside the British Library, London.
Credit: Shutterstock/William Barton
Suppose someone asked you to devise the most powerful computer possible. Alan Turing, whose reputation as a central figure in computer science and artificial intelligence has only grown since his untimely death in 1954, applied his genius to problems such as this one in an age before computers as we know them existed. His theoretical work on this problem and others remains a foundation of computing, AI and modern cryptographic standards, including those NIST recommends.
The road from devising the most powerful computer possible to cryptographic standards has a few twists and turns, as does Turings brief life.
Alan Turing
Credit: National Portrait Gallery, London
In Turings time, mathematicians debated whether it was possible to build a single, all-purpose machine that could solve all problems that are computable. For example, we can compute a cars most energy-efficient route to a destination, and (in principle) the most likely way in which a string of amino acids will fold into a three-dimensional protein. Another example of a computable problem, important to modern encryption, is whether or not bigger numbers can be expressed as the product of two smaller numbers. For example, 6 can be expressed as the product of 2 and 3, but 7 cannot be factored into smaller integers and is therefore a prime number.
Some prominent mathematicians proposed elaborate designs for universal computers that would operate by following very complicated mathematical rules. It seemed overwhelmingly difficult to build such machines. It took the genius of Turing to show that a very simple machine could in fact compute all that is computable.
His hypothetical device is now known as a Turing machine. The centerpiece of the machine is a strip of tape, divided into individual boxes. Each box contains a symbol (such as A,C,T, G for the letters of genetic code) or a blank space. The strip of tape is analogous to todays hard drives that store bits of data. Initially, the string of symbols on the tape corresponds to the input, containing the data for the problem to be solved. The string also serves as the memory of the computer. The Turing machine writes onto the tape data that it needs to access later in the computation.
Credit: NIST
The device reads an individual symbol on the tape and follows instructions on whether to change the symbol or leave it alone before moving to another symbol. The instructions depend on the current state of the machine. For example, if the machine needs to decide whether the tape contains the text string TC it can scan the tape in the forward direction while switching among the states previous letter was T and previous letter was not C. If while in state previous letter was T it reads a C, it goes to a state found it and halts. If it encounters the blank symbol at the end of the input, it goes to the state did not find it and halts. Nowadays we would recognize the set of instructions as the machines program.
It took some time, but eventually it became clear to everyone that Turing was right: The Turing machine could indeed compute all that seemed computable. No number of additions or extensions to this machine could extend its computing capability.
To understand what can be computed it is helpful to identify what cannot be computed. Ina previous life as a university professor I had to teach programming a few times. Students often encounter the following problem: My program has been running for a long time; is it stuck? This is called the Halting Problem, and students often wondered why we simply couldnt detect infinite loops without actually getting stuck in them. It turns out a program to do this is an impossibility. Turing showed that there does not exist a machine that detects whether or not another machine halts. From this seminal result followed many other impossibility results. For example, logicians and philosophers had to abandon the dream of an automated way of detecting whether an assertion (such as whether there are infinitely many prime numbers) is true or false, as that is uncomputable. If you could do this, then you could solve the Halting Problem simply by asking whether the statement this machine halts is true or false.
Turing went on to make fundamental contributions to AI, theoretical biology and cryptography. His involvement with this last subject brought him honor and fame during World War II, when he played a very important role in adapting and extending cryptanalytic techniques invented by Polish mathematicians. This work broke the German Enigma machine encryption, making a significant contribution to the war effort.
Turing was gay. After the war, in 1952, the British government convicted him for having sex with a man. He stayed out of jail only by submitting to what is now called chemical castration. He died in 1954 at age 41 by cyanide poisoning, which was initially ruled a suicide but may have been an accident according to subsequent analysis. More than 50 years would pass before the British government apologized and pardoned him (after years of campaigning by scientists around the world). Today, the highest honor in computer sciences is called the Turing Award.
Turings computability work provided the foundation for modern complexity theory. This theory tries to answer the question Among those problems that can be solved by a computer, which ones can be solved efficiently? Here, efficiently means not in billions of years but in milliseconds, seconds, hours or days, depending on the computational problem.
For example, much of the cryptography that currently safeguards our data and communications relies on the belief that certain problems, such as decomposing an integer number into its prime factors, cannot be solved before the Sun turns into a red giant and consumes the Earth (currently forecast for 4 billion to 5 billion years). NIST is responsible for cryptographic standards that are used throughout the world. We could not do this work without complexity theory.
Technology sometimes throws us a curve, such as the discovery that if a sufficiently big and reliable quantum computer is built it would be able to factor integers, thus breaking some of our cryptography. In this situation, NIST scientists must rely on the worlds experts (many of them in-house) in order to update our standards. There are deep reasons to believe that quantum computers will not be able to break the cryptography that NIST is about to roll out. Among these reasons is that Turings machine can simulate quantum computers. This implies that complexity theory gives us limits on what a powerful quantum computer can do.
But that is a topic for another day. For now, we can celebrate how Turing provided the keys to much of todays computing technology and even gave us hints on how to solve looming technological problems.
See the original post here:
Alan Turing's Everlasting Contributions to Computing, AI and Cryptography - NIST
- Two Quantum Computers Face-Off for the First Time in History! - Interesting Engineering [Last Updated On: February 26th, 2017] [Originally Added On: February 26th, 2017]
- Split decision in first-ever quantum computer faceoff | Science | AAAS - Science Magazine [Last Updated On: February 26th, 2017] [Originally Added On: February 26th, 2017]
- How to defend against quantum computing attacks - ScienceBlog.com - ScienceBlog.com (blog) [Last Updated On: February 28th, 2017] [Originally Added On: February 28th, 2017]
- Researchers Have Directly Tested Two Quantum Computing ... - Futurism [Last Updated On: February 28th, 2017] [Originally Added On: February 28th, 2017]
- Scientists reveal new super-fast form of computer that 'grows as it ... - Phys.Org [Last Updated On: March 2nd, 2017] [Originally Added On: March 2nd, 2017]
- Andreas Antonopoulos: Bitcoin's Design Can Withstand Quantum Computer Attack - CryptoCoinsNews [Last Updated On: March 2nd, 2017] [Originally Added On: March 2nd, 2017]
- IBM QISKit Aims to Enable Cloud-basaed Quantum Computation - InfoQ.com [Last Updated On: March 11th, 2017] [Originally Added On: March 11th, 2017]
- Legacy of brilliant young scientist is a major leap in quantum ... - Phys.Org [Last Updated On: March 11th, 2017] [Originally Added On: March 11th, 2017]
- IBM Q is the first initiative to build commercial quantum computing systems - BetaNews [Last Updated On: March 11th, 2017] [Originally Added On: March 11th, 2017]
- IBM To Commercialize Quantum Computing - ADT Magazine [Last Updated On: March 11th, 2017] [Originally Added On: March 11th, 2017]
- Quantum computer learns to 'see' trees - Science Magazine [Last Updated On: March 11th, 2017] [Originally Added On: March 11th, 2017]
- David Deutsch and His Dream Machine - The New Yorker [Last Updated On: March 11th, 2017] [Originally Added On: March 11th, 2017]
- Quantum computers are here -- but what are they good for? - PCWorld [Last Updated On: March 18th, 2017] [Originally Added On: March 18th, 2017]
- IBM's first commercial quantum computer could shake-up chemistry ... - Chemistry World (subscription) [Last Updated On: March 18th, 2017] [Originally Added On: March 18th, 2017]
- Quantum computing takes a massive step forward thanks to ... - TechRadar [Last Updated On: March 18th, 2017] [Originally Added On: March 18th, 2017]
- Better than Quantum Computing: The EU Launches a Biocomputer ... - Labiotech.eu (blog) [Last Updated On: March 21st, 2017] [Originally Added On: March 21st, 2017]
- In a few years new Quantum computers from IBM, Google and Microsoft will accelerate breakthroughs in chemistry and ... - Next Big Future [Last Updated On: March 21st, 2017] [Originally Added On: March 21st, 2017]
- Research project successful: Volkswagen IT experts use quantum ... - Automotive World (press release) [Last Updated On: March 21st, 2017] [Originally Added On: March 21st, 2017]
- Rechargeable 'spin battery' promising for spintronics and quantum ... - Phys.Org [Last Updated On: April 22nd, 2017] [Originally Added On: April 22nd, 2017]
- The First Quantum Computer You Own Could Be Powered by a Time Crystal - Futurism [Last Updated On: April 22nd, 2017] [Originally Added On: April 22nd, 2017]
- Microsoft to double headcount of Sydney quantum computing lab ... - Computerworld Australia [Last Updated On: April 22nd, 2017] [Originally Added On: April 22nd, 2017]
- Could Time Crystals Hold The Key To Building The First Quantum Computer? - Wall Street Pit [Last Updated On: April 22nd, 2017] [Originally Added On: April 22nd, 2017]
- Microsoft boosts Aussie quantum computing team - ARN - ARNnet [Last Updated On: April 26th, 2017] [Originally Added On: April 26th, 2017]
- Will Google Be The First To Achieve Quantum Computing Supremacy? - Wall Street Pit [Last Updated On: April 26th, 2017] [Originally Added On: April 26th, 2017]
- Computing on the boundary between conventional and quantum - Electronics Weekly [Last Updated On: April 29th, 2017] [Originally Added On: April 29th, 2017]
- Quantum cryptography - Wikipedia [Last Updated On: April 29th, 2017] [Originally Added On: April 29th, 2017]
- Beyond classical computing without fault-tolerance: Looking for the ... - Phys.Org [Last Updated On: April 30th, 2017] [Originally Added On: April 30th, 2017]
- Quantum Computing | D-Wave Systems [Last Updated On: April 30th, 2017] [Originally Added On: April 30th, 2017]
- quantum computer - WIRED [Last Updated On: April 30th, 2017] [Originally Added On: April 30th, 2017]
- World's First Quantum Computer Is Here - Wall Street Pit - Wall Street Pit [Last Updated On: May 7th, 2017] [Originally Added On: May 7th, 2017]
- China adds a quantum computer to high-performance computing arsenal - PCWorld [Last Updated On: May 7th, 2017] [Originally Added On: May 7th, 2017]
- The Quantum Computer Revolution Is Closer Than You May Think - National Review [Last Updated On: May 7th, 2017] [Originally Added On: May 7th, 2017]
- China builds five qubit quantum computer sampling and will scale to 20 qubits by end of this year and could any beat ... - Next Big Future [Last Updated On: May 7th, 2017] [Originally Added On: May 7th, 2017]
- Researchers seek to advance quantum computing - The Stanford Daily [Last Updated On: May 14th, 2017] [Originally Added On: May 14th, 2017]
- New Materials Could Make Quantum Computers More Practical - Tom's Hardware [Last Updated On: May 14th, 2017] [Originally Added On: May 14th, 2017]
- Nanofridge could keep quantum computers cool enough to calculate - New Scientist [Last Updated On: May 14th, 2017] [Originally Added On: May 14th, 2017]
- Home News Computer Europe Takes Quantum Computing to the Next Level With this Billion Euro... - TrendinTech [Last Updated On: May 14th, 2017] [Originally Added On: May 14th, 2017]
- Quantum Computing Demands a Whole New Kind of Programmer - Singularity Hub [Last Updated On: May 14th, 2017] [Originally Added On: May 14th, 2017]
- Refrigerator for quantum computers discovered - Science Daily [Last Updated On: May 14th, 2017] [Originally Added On: May 14th, 2017]
- Scientists Invent Nanoscale Refrigerator For Quantum Computers - Wall Street Pit [Last Updated On: May 14th, 2017] [Originally Added On: May 14th, 2017]
- IBM builds two new Quantum Computing processors - Enterprise Times [Last Updated On: May 18th, 2017] [Originally Added On: May 18th, 2017]
- Quantum Computers Sound Great, But Who's Going to Program Them? - TrendinTech [Last Updated On: May 18th, 2017] [Originally Added On: May 18th, 2017]
- IBM makes a leap in quantum computing power - PCWorld [Last Updated On: May 18th, 2017] [Originally Added On: May 18th, 2017]
- IBM's Newest Quantum Computing Processors Have Triple the Qubits of Their Last - Futurism [Last Updated On: May 19th, 2017] [Originally Added On: May 19th, 2017]
- IBM scientists demonstrate ballistic nanowire connections, a potential future key component for quantum computing - Phys.Org [Last Updated On: May 19th, 2017] [Originally Added On: May 19th, 2017]
- The route to high-speed quantum computing is paved with error | Ars ... - Ars Technica UK [Last Updated On: May 20th, 2017] [Originally Added On: May 20th, 2017]
- Researchers push forward quantum computing research - The ... - Economic Times [Last Updated On: May 22nd, 2017] [Originally Added On: May 22nd, 2017]
- US playing catch-up in quantum computing - The Register-Guard [Last Updated On: May 22nd, 2017] [Originally Added On: May 22nd, 2017]
- IBM Q Offers Quantum Computing as a Service The Merkle - The Merkle [Last Updated On: May 25th, 2017] [Originally Added On: May 25th, 2017]
- Graphene Just Brought Us One Step Closer to Practical Quantum Computers - Futurism [Last Updated On: May 25th, 2017] [Originally Added On: May 25th, 2017]
- How quantum computing increases cybersecurity risks | Network ... - Network World [Last Updated On: May 25th, 2017] [Originally Added On: May 25th, 2017]
- Is the US falling behind in the race for quantum computing? - AroundtheO [Last Updated On: May 25th, 2017] [Originally Added On: May 25th, 2017]
- Artificial intelligence and quantum computing aid cyber crime fight - Financial Times [Last Updated On: May 25th, 2017] [Originally Added On: May 25th, 2017]
- Google Plans to Demonstrate the Supremacy of Quantum ... - IEEE Spectrum [Last Updated On: May 25th, 2017] [Originally Added On: May 25th, 2017]
- Top 5: Things to know about quantum computers - TechRepublic [Last Updated On: May 25th, 2017] [Originally Added On: May 25th, 2017]
- AI and Quantum Computers Are Our Best Weapons Against Cyber Criminals - Futurism [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Scientists claim to have invented the world's first quantum-proof ... - ScienceAlert [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Microsoft, Purdue Tackle Topological Quantum Computer - HPCwire - HPCwire (blog) [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- MIT Just Unveiled A Technique to Mass Produce Quantum Computers - Futurism [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Here's How We Can Achieve Mass-Produced Quantum Computers - ScienceAlert [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Research collaborative pursues advanced quantum computing - Phys.Org [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- Telstra just wants a quantum computer to offer as-a-service - ZDNet [Last Updated On: June 1st, 2017] [Originally Added On: June 1st, 2017]
- D-Wave partners with U of T to move quantum computing along - Financial Post [Last Updated On: June 2nd, 2017] [Originally Added On: June 2nd, 2017]
- Doped Diamonds Push Practical Quantum Computing Closer to Reality - Motherboard [Last Updated On: June 3rd, 2017] [Originally Added On: June 3rd, 2017]
- Team develops first blockchain that can't be hacked by quantum computer - Siliconrepublic.com [Last Updated On: June 3rd, 2017] [Originally Added On: June 3rd, 2017]
- Are Enterprises Ready to Take a Quantum Leap? - IT Business Edge [Last Updated On: June 13th, 2017] [Originally Added On: June 13th, 2017]
- Scientists May Have Found a Way to Combat Quantum Computer Blockchain Hacking - Futurism [Last Updated On: June 13th, 2017] [Originally Added On: June 13th, 2017]
- Microsoft and Purdue work on scalable topological quantum computer - Next Big Future [Last Updated On: June 13th, 2017] [Originally Added On: June 13th, 2017]
- From the Abacus to Supercomputers to Quantum Computers - Duke Today [Last Updated On: June 13th, 2017] [Originally Added On: June 13th, 2017]
- Quantum Computers Will Analyze Every Financial Model at Once - Singularity Hub [Last Updated On: June 13th, 2017] [Originally Added On: June 13th, 2017]
- Quantum Computing Technologies markets will reach $10.7 billion by 2024 - PR Newswire (press release) [Last Updated On: June 14th, 2017] [Originally Added On: June 14th, 2017]
- KPN CISO details Quantum computing attack dangers - Mobile World Live [Last Updated On: June 16th, 2017] [Originally Added On: June 16th, 2017]
- Get ahead in quantum computing AND attract Goldman Sachs - eFinancialCareers [Last Updated On: June 16th, 2017] [Originally Added On: June 16th, 2017]
- Toward optical quantum computing - MIT News [Last Updated On: June 17th, 2017] [Originally Added On: June 17th, 2017]
- Quantum Machine Learning Computer Hybrids at the Center of New Start-Ups - TrendinTech [Last Updated On: June 20th, 2017] [Originally Added On: June 20th, 2017]
- Israel Enters Quantum Computer Race, Placing Encryption at Ever-Greater Risk - Sputnik International [Last Updated On: June 20th, 2017] [Originally Added On: June 20th, 2017]
- Prototype device enables photon-photon interactions at room ... - Phys.Org [Last Updated On: June 20th, 2017] [Originally Added On: June 20th, 2017]
- The Quantum Computer Factory That's Taking on Google and IBM - WIRED [Last Updated On: June 20th, 2017] [Originally Added On: June 20th, 2017]
- 6 Things Quantum Computers Will Be Incredibly Useful For - Singularity Hub [Last Updated On: July 1st, 2017] [Originally Added On: July 1st, 2017]
- Volkswagen buys D-Wave quantum computers which sell for $15 million each - Robotics and Automation News (press release) (registration) [Last Updated On: July 2nd, 2017] [Originally Added On: July 2nd, 2017]