Wu, Z. Antibiotic Use and Antibiotic Resistance in Food-Producing Animals in China OECD Food, Agriculture and Fisheries Paper No. 134 (OECD, 2019); https://doi.org/10.1787/4adba8c1-en
Looft, T. et al. In-feed antibiotic effects on the swine intestinal microbiome. Proc. Natl Acad. Sci. USA 109, 16911696 (2012).
Article ADS CAS PubMed PubMed Central Google Scholar
Vega, N. M., Allison, K. R., Samuels, A. N., Klempner, M. S. & Collins, J. J. Salmonella typhimurium intercepts Escherichia coli signaling to enhance antibiotic tolerance. Proc. Natl Acad. Sci. USA 110, 1442014425 (2013).
Article ADS CAS PubMed PubMed Central Google Scholar
Sommer, F., Anderson, J. M., Bharti, R., Raes, J. & Rosenstiel, P. The resilience of the intestinal microbiota influences health and disease. Nat. Rev. Microbiol. 15, 630638 (2017).
Article CAS PubMed Google Scholar
Pan, D. & Yu, Z. Intestinal microbiome of poultry and its interaction with host and diet. Gut Microbes 5, 108119 (2014).
Article PubMed Google Scholar
Baron, S. A., Diene, S. M. & Rolain, J.-M. Human microbiomes and antibiotic resistance. Hum. Microb. J. 10, 4352 (2018).
Article Google Scholar
Gautam, R. et al. Modeling the effect of seasonal variation in ambient temperature on the transmission dynamics of a pathogen with a free-living stage: example of Escherichia coli O157:H7 in a dairy herd. Prev. Vet. Med. 102, 1021 (2011).
Article PubMed Google Scholar
Oakley, B. B. et al. The cecal microbiome of commercial broiler chickens varies significantly by season. Poult. Sci. 97, 36353644 (2018).
Article CAS PubMed Google Scholar
Wang, X. et al. Effects of high ambient temperature on the community structure and composition of ileal microbiome of broilers. Poult. Sci. 97, 21532158 (2018).
Article CAS PubMed Google Scholar
Sohsuebngarm, D., Kongpechr, S. & Sukon, P. Microclimate, body weight uniformity, body temperature, and footpad dermatitis in broiler chickens reared in commercial poultry houses in hot and humid tropical climates. World Vet. J. 9, 241248 (2019).
Google Scholar
Thornton, P. K., van de Steeg, J., Notenbaert, A. & Herrero, M. The impacts of climate change on livestock and livestock systems in developing countries: a review of what we know and what we need to know. Agric. Syst. 101, 113127 (2009).
Article Google Scholar
Ko, K. K. K., Chng, K. R. & Nagarajan, N. Metagenomics-enabled microbial surveillance. Nat. Microbiol. 7, 486496 (2022).
Article CAS PubMed Google Scholar
Astill, J., Dara, R. A., Fraser, E. D. G. & Sharif, S. Detecting and predicting emerging disease in poultry with the implementation of new technologies and big data: a focus on avian influenza virus. Front. Vet. Sci. https://doi.org/10.3389/fvets.2018.00263 (2018).
Ahmed, G. et al. An approach towards IoT-based predictive service for early detection of diseases in poultry chickens. Sustainability 13, 13396 (2021).
Article Google Scholar
Her, H.-L. & Wu, Y.-W. A pan-genome-based machine learning approach for predicting antimicrobial resistance activities of the Escherichia coli strains. Bioinformatics 34, i89i95 (2018).
Article CAS PubMed PubMed Central Google Scholar
Hyun, J. C., Kavvas, E. S., Monk, J. M. & Palsson, B. O. Machine learning with random subspace ensembles identifies antimicrobial resistance determinants from pan-genomes of three pathogens. PLoS Comput. Biol. 16, e1007608 (2020).
Article ADS CAS PubMed PubMed Central Google Scholar
Pearcy, N. et al. Genome-scale metabolic models and machine learning reveal genetic determinants of antibiotic resistance in Escherichia coli and unravel the underlying metabolic adaptation mechanisms. mSystems 6, e00913e00920 (2021).
Article CAS PubMed PubMed Central Google Scholar
Peng, Z. et al. Whole-genome sequencing and gene sharing network analysis powered by machine learning identifies antibiotic resistance sharing between animals, humans and environment in livestock farming. PLoS Comput. Biol. 18, e1010018 (2022).
Article CAS PubMed PubMed Central Google Scholar
Kavvas, E. S. et al. Machine learning and structural analysis of Mycobacterium tuberculosis pan-genome identifies genetic signatures of antibiotic resistance. Nat. Commun. 9, 4306 (2018).
Article ADS PubMed PubMed Central Google Scholar
Kavvas, E. S., Yang, L., Monk, J. M., Heckmann, D. & Palsson, B. O. A biochemically-interpretable machine learning classifier for microbial GWAS. Nat. Commun. 11, 2580 (2020).
Article ADS CAS PubMed PubMed Central Google Scholar
Liu, Z. et al. Evaluation of machine Learning models for predicting antimicrobial resistance of Actinobacillus pleuropneumoniae from whole genome sequences. Front. Microbiol. https://doi.org/10.3389/fmicb.2020.00048 (2020).
ValizadehAslani, T., Zhao, Z., Sokhansanj, B. A. & Rosen, G. L. Amino acid k-mer feature extraction for quantitative antimicrobial resistance (AMR) prediction by machine learning and model interpretation for biological insights. Biology 9, 365 (2020).
Article CAS PubMed PubMed Central Google Scholar
Wang, W. et al. Novel SCCmec type XV (7A) and two pseudo-SCCmec variants in foodborne MRSA in China. J. Antimicrob. Chemother. 77, 903909 (2022).
Article CAS PubMed Google Scholar
Wang, W. et al. Whole-genome sequencing and machine learning analysis of Staphylococcus aureus from multiple heterogeneous sources in China reveals common genetic traits of antimicrobial resistance. mSystems 6, e0118501120 (2021).
Article PubMed PubMed Central Google Scholar
Hendriksen, R. S. et al. Using genomics to track global antimicrobial resistance. Public Health Front. https://doi.org/10.3389/fpubh.2019.00242 (2019).
Maciel-Guerra, A. et al. Dissecting microbial communities and resistomes for interconnected humans, soil, and livestock. ISME J. 17, 2135 (2022).
Article PubMed PubMed Central Google Scholar
Okeke, I. N. et al. Leapfrogging laboratories: the promise and pitfalls of high-tech solutions for antimicrobial resistance surveillance in low-income settings. BMJ Glob. Health 5, e003622 (2020).
Article PubMed PubMed Central Google Scholar
Iskandar, K. et al. Surveillance of antimicrobial resistance in low- and middle-income countries: a scattered picture. Antimicrob. Resist. Infect. Control 10, 63 (2021).
Article PubMed PubMed Central Google Scholar
Ikhimiukor, O. O., Odih, E. E., Donado-Godoy, P. & Okeke, I. N. A bottom-up view of antimicrobial resistance transmission in developing countries. Nat. Microbiol. 7, 757765 (2022).
Article CAS PubMed Google Scholar
Zhang, A.-N. et al. An omics-based framework for assessing the health risk of antimicrobial resistance genes. Nat. Commun. 12, 4765 (2021).
Article ADS CAS PubMed PubMed Central Google Scholar
Tang, B. et al. Characterization of an NDM-5 carbapenemase-producing Escherichia coli ST156 isolate from a poultry farm in Zhejiang, China. BMC Microbiol. 19, 82 (2019).
Article PubMed PubMed Central Google Scholar
Cui, M. et al. Prevalence and characterization of fluoroquinolone resistant Salmonella isolated from an integrated broiler chicken supply chain. Front. Microbiol. https://doi.org/10.3389/fmicb.2019.01865 (2019).
Tong, C. et al. Swine manure facilitates the spread of antibiotic resistome including tigecycline-resistant tet(X) variants to farm workers and receiving environment. Sci. Total Environ. 808, 152157 (2022).
Article ADS CAS PubMed Google Scholar
Wang, Y. et al. A novel gene, optrA, that confers transferable resistance to oxazolidinones and phenicols and its presence in Enterococcus faecalis and Enterococcus faecium of human and animal origin. J. Antimicrob. Chemother. 70, 21822190 (2015).
Article CAS PubMed Google Scholar
Aradanas, M., Poljak, Z., Fittipaldi, N., Ricker, N. & Farzan, A. Serotypes, virulence-associated factors, and antimicrobial resistance of Streptococcus suis isolates recovered from sick and healthy pigs determined by whole-genome sequencing. Front. Vet. Sci. 8, 742345 (2021).
Article PubMed PubMed Central Google Scholar
Hansen, L. H., Srensen, S. J., Jrgensen, H. S. & Jensen, L. B. The prevalence of the OqxAB multidrug efflux pump amongst olaquindox-resistant Escherichia coli in pigs. Microb. Drug Resist. 11, 378382 (2005).
Article CAS PubMed Google Scholar
Dortet, L., Nordmann, P. & Poirel, L. Association of the emerging carbapenemase NDM-1 with a bleomycin resistance protein in Enterobacteriaceae and Acinetobacter baumannii. Antimicrob. Agents Chemother. 56, 16931697 (2012).
Article CAS PubMed PubMed Central Google Scholar
Suchard, M. A. et al. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 4, vey016 (2018).
Article PubMed PubMed Central Google Scholar
Laird, T. J. et al. Diversity detected in commensals at host and farm level reveals implications for national antimicrobial resistance surveillance programmes. J. Antimicrob. Chemother. 77, 400408 (2022).
Article CAS PubMed Google Scholar
Zhou, W. et al. Antimicrobial resistance and genomic characterization of Escherichia coli from pigs and chickens in Zhejiang, China. Front. Microbiol. https://doi.org/10.3389/fmicb.2022.1018682 (2022).
He, D. et al. CTX-M-123, a novel hybrid of the CTX-M-1 and CTX-M-9 group -lactamases recovered from Escherichia coli isolates in China. Antimicrob. Agents Chemother. 57, 40684071 (2013).
Article CAS PubMed PubMed Central Google Scholar
Wang, Y. et al. Antibiotic resistance gene reservoir in live poultry markets. J. Infect. 78, 445453 (2019).
Article PubMed Google Scholar
Sciortino, S. et al. Occurrence and antimicrobial resistance of Arcobacter spp. recovered from aquatic environments. Antibiotics 10, 288 (2021).
Article CAS PubMed PubMed Central Google Scholar
Jochum, J. M., Redweik, G. A. J., Ott, L. C. & Mellata, M. Bacteria broadly-resistant to last resort antibiotics detected in commercial chicken farms. Microorganisms https://doi.org/10.3390/microorganisms9010141 (2021).
Baejewska, A., Zalewska, M., Grudniak, A. & Popowska, M. A comprehensive study of the microbiome, resistome, and physical and chemical characteristics of chicken waste from intensive farms. Biomolecules https://doi.org/10.3390/biom12081132 (2022).
de Mesquita Souza Saraiva, M. et al. Antimicrobial resistance in the globalized food chain: a One Health perspective applied to the poultry industry. Braz. J. Microbiol. 53, 465486 (2022).
Article PubMed Google Scholar
Surveillance and One Health in food production key to halting antimicrobial resistance. World Health Organisation (7 June 2021); https://www.who.int/europe/news/item/07-06-2021-surveillance-and-one-health-in-food-production-key-to-halting-antimicrobial-resistance
Davies, N., Jrgensen, F., Willis, C., McLauchlin, J. & Chattaway, M. A. Whole genome sequencing reveals antimicrobial resistance determinants (AMR genes) of Salmonella enterica recovered from raw chicken and ready-to-eat leaves imported into England between 2014 and 2019. J. Appl. Microbiol. 133, 25692582 (2022).
Article CAS PubMed PubMed Central Google Scholar
Conesa, A., Garofolo, G., Di Pasquale, A. & Camm, C. Monitoring AMR in Campylobacter jejuni from Italy in the last 10 years (20112021): microbiological and WGS data risk assessment. EFSA J. 20, e200406 (2022).
Article CAS PubMed PubMed Central Google Scholar
Rohr, J. R. et al. Emerging human infectious diseases and the links to global food production. Nat. Sustain. 2, 445456 (2019).
Article PubMed PubMed Central Google Scholar
Xiong, W. et al. Antibiotic-mediated changes in the fecal microbiome of broiler chickens define the incidence of antibiotic resistance genes. Microbiome 6, 34 (2018).
Article PubMed PubMed Central Google Scholar
Zhou, Y. et al. Antibiotic administration routes and oral exposure to antibiotic resistant bacteria as key drivers for gut microbiota disruption and resistome in poultry. Front. Microbiol. https://doi.org/10.3389/fmicb.2020.01319 (2020).
Noyes, N. R. et al. Resistome diversity in cattle and the environment decreases during beef production. Elife 5, e13195 (2016).
Article PubMed PubMed Central Google Scholar
Zhang, C. Z. et al. The emergence of chromosomally located blaCTX-M-55 in Salmonella from foodborne animals in China. Front. Microbiol. 10, 1268 (2019).
Article PubMed PubMed Central Google Scholar
Storey, N. et al. Use of genomics to explore AMR persistence in an outdoor pig farm with low antimicrobial usage. Microb. Genom. https://doi.org/10.1099/mgen.0.000782 (2022).
Thu, W. P. et al. Prevalence, antimicrobial resistance, virulence gene, and class 1 integrons of Enterococcus faecium and Enterococcus faecalis from pigs, pork and humans in ThaiLaos border provinces. J. Glob. Antimicrob. Resist. 18, 130138 (2019).
Link:
Machine learning and metagenomics reveal shared antimicrobial ... - Nature.com
Read More..