Yi, Y., Zhu, D., Guo, S., Zhang, Z. & Shi, C. A review on the deterioration and approaches to enhance the durability of concrete in the marine environment. Cement Concr. Compos. 113, 103695 (2020).
Article CAS Google Scholar
Ham, Y., Han, K. K., Lin, J. J. & Golparvar-Fard, M. Visual monitoring of civil infrastructure systems via camera-equipped unmanned aerial vehicles (UAVs): A review of related works. Vis. Eng. 4(1), 18 (2016).
Article Google Scholar
Sharma, K. V. et al. Prognostic modeling of polydisperse SiO2/Aqueous glycerol nanofluids thermophysical profile using an explainable artificial intelligence (XAI) approach. Eng. Appl. Artif. Intell. 126, 106967 (2023).
Article Google Scholar
Kanti, P. K. et al. Thermophysical profile of graphene oxide and MXene hybrid nanofluids for sustainable energy applications: Model prediction with a Bayesian optimized neural network with K-cross fold validation. FlatChem 39, 100501 (2023).
Article CAS Google Scholar
Kanti, P. et al. Properties of water-based fly ash-copper hybrid nanofluid for solar energy applications: Application of RBF model. Sol. Energy Mater. Sol. Cells 234, 111423 (2022).
Article CAS Google Scholar
Kanti, P. K. et al. The stability and thermophysical properties of Al2O3-graphene oxide hybrid nanofluids for solar energy applications: application of robust autoregressive modern machine learning technique. Sol. Energy Mater. Sol. Cells 253, 112207 (2023).
Article CAS Google Scholar
Hsieh, Y. A. & Tsai, Y. J. Machine learning for crack detection: Review and model performance comparison. J. Comput. Civ. Eng. 34(5), 04020038 (2020).
Article Google Scholar
Munawar, H. S., Hammad, A. W. A., Haddad, A., Soares, C. A. P. & Waller, S. T. Image-based crack detection methods: A review. Infrastructures 6, 115. https://doi.org/10.3390/infrastructures6080115 (2021).
Article Google Scholar
Dorafshan, S., Thomas, R. J. & Maguire, M. Sdnet 2018: An annotated image dataset for non-contact concrete crack detection using deep convolutional neural networks. Data Brief 21, 16641668 (2018).
Article PubMed PubMed Central Google Scholar
C aglar, F., O zgenel, R.: Concrete crack images for classification. Mendeley Data 2 (2019)
Xu, H. et al. Automatic bridge crack detection using a convolutional neural network. Appl. Sci. 9(14), 2867 (2019).
Article Google Scholar
Harinath Reddy, C., Mini, K., Radhika, N.: Structural health monitor- ingan integrated approach for vibration analysis with wireless sensors to steel structure using image processing. In: International Conference on ISMAC in Computational Vision and Bio-Engineering, pp. 15951610 (2018). Springer
Pauly, L., Hogg, D., Fuentes, R., Peel, H.: Deeper networks for pavement crack detection. In: Proceedings of the 34th ISARC, pp. 479485 (2017). IAARC
Lins, R. G. & Givigi, S. N. Automatic crack detection and measurement based on image analysis. IEEE Trans. Instrum. Meas. 65(3), 583590. https://doi.org/10.1109/TIM.2015.2509278 (2016).
Article Google Scholar
Shahrokhinasab, E., Hosseinzadeh, N., Monirabbasi, A. & Torkaman, S. Performance of image-based crack detection systems in concrete structures. J. Soft Comput. Civ. Eng. 4(1), 127139 (2020).
Google Scholar
Munawar, H. S., Hammad, A. W., Haddad, A., Soares, C. A. P. & Waller, S. T. Image-based crack detection methods: A review. Infrastructures 6(8), 115 (2021).
Article Google Scholar
Zou, Q., Cao, Y., Li, Q., Mao, Q. & Wang, S. Cracktree: Automatic crack detection from pavement images. Pattern Recognit. Lett. 33(3), 227238 (2012).
Article Google Scholar
Salman, M., Mathavan, S., Kamal, K. & Rahman, M. Pavement crack detection using the Gabor filter. In 16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013) (eds Salman, M. et al.) 20392044 (IEEE, 2013).
Chapter Google Scholar
Niu, B., Wu, H. & Meng, Y. Application of cem algorithm in the field of tunnel crack identification. In 2020 IEEE 5th International Conference on Image, Vision and Computing (ICIVC) (eds Niu, B. et al.) 232236 (IEEE, 2020).
Chapter Google Scholar
Chhabra, G. et al. Human emotions recognition, analysis and transformation by the bioenergy field in smart grid using image processing. Electronics 11, 4059. https://doi.org/10.3390/electronics11234059 (2022).
Article Google Scholar
Baltazart, V., Nicolle, P. & Yang, L. Ongoing tests and improvements of the mps algorithm for the automatic crack detection within grey level pavement images. In 2017 25th European Signal Processing Conference (EUSIPCO) (eds Baltazart, V. et al.) 20162020 (IEEE, 2017).
Chapter Google Scholar
Jo, J. & Jadidi, Z. A high precision crack classification system using multi-layered image processing and deep belief learning. Struct. Infrastruct. Eng. 16(2), 297305 (2020).
Article Google Scholar
Landstrom, A. & Thurley, M. J. Morphology-based crack detection for steel slabs. IEEE J. Sel. Top. Signal Process. 6(7), 866875 (2012).
Article Google Scholar
Prasanna, P. et al. Automated crack detection on concrete bridges. IEEE Trans. Autom. Sci. Eng. 13(2), 591599 (2014).
Article Google Scholar
Lin, M., Zhou, R., Yan, Q. & Xu, X. Automatic pavement crack detection using hmrf-em algorithm. In 2019 International Conference on Computer, Information and Telecommunication Systems (CITS) (eds Lin, M. et al.) 15 (IEEE, 2019).
Google Scholar
Pratico, F. G., Fedele, R., Naumov, V. & Sauer, T. Detection and monitoring of bottom-up cracks in road pavement using a machine-learning approach. Algorithms 13(4), 81 (2020).
Article Google Scholar
Zhang, F. et al. A new identification method for surface cracks from uav images based on machine learning in coal mining areas. Remote Sens. 12(10), 1571 (2020).
Article Google Scholar
Zhang, L. et al. Machine learning-based real-time visible fatigue crack growth detection. Digit. Commun. Netw. 7(4), 551558 (2021).
Article Google Scholar
Dharneeshkar, J. et al. Deep learning based detection of potholes in indian roads using yolo. In 2020 International Conference on Inventive Computation Technologies (ICICT) (eds Dharneeshkar, J. et al.) 381385 (IEEE, 2020).
Google Scholar
Li, H., Zong, J., Nie, J., Wu, Z. & Han, H. Pavement crack detection algorithm based on densely connected and deeply supervised network. IEEE Access 9, 1183511842 (2021).
Article Google Scholar
Zhang, L., Yang, F., Zhang, Y. D. & Zhu, Y. J. Road crack detection using deep convolutional neural network. In 2016 IEEE International Conference on Image Processing (ICIP) (eds Zhang, L. et al.) 37083712 (IEEE, 2016).
Chapter Google Scholar
Meng, X. Concrete crack detection algorithm based on deep residual neural networks. Sci. Program. 2021, 17 (2021).
CAS Google Scholar
Su, C. & Wang, W. Concrete cracks detection using convolutional neural- network based on transfer learning. Math. Problems Eng. 2020, 110 (2020).
Google Scholar
Ye, X.-W., Jin, T. & Chen, P.-Y. Structural crack detection using deep learningbased fully convolutional networks. Adv. Struct. Eng. 22(16), 34123419 (2019).
Article Google Scholar
Feng, C. et al. Structural damage detection using deep convolutional neural network and transfer learning. KSCE J. Civ. Eng. 23(10), 44934502 (2019).
Article Google Scholar
Kim, C. N., Kawamura, K., Nakamura, H. & Tarighat, A. Automatic crack detection for concrete infrastructures using image processing and deep learning. In IOP Conference Series: Materials Science and Engineering Vol. 829 (eds Kim, C. N. et al.) 012027 (IOP Publishing, 2020).
Google Scholar
Cao, M.-T., Tran, Q.-V., Nguyen, N.-M. & Chang, K.-T. Survey on performance of deep learning models for detecting road damages using multiple dashcam image resources. Adv. Eng. Inform. 46, 101182 (2020).
Article Google Scholar
Nguyen, N. H. T., Perry, S., Bone, D., Le, H. T. & Nguyen, T. T. Two-stage convolutional neural network for road crack detection and segmentation. Expert Syst. Appl. 186, 115718 (2021).
Article Google Scholar
Park, S. E., Eem, S.-H. & Jeon, H. Concrete crack detection and quantifica- tion using deep learning and structured light. Constr. Build. Mater. 252, 119096 (2020).
Article Google Scholar
Huyan, J., Li, W., Tighe, S., Xu, Z. & Zhai, J. Cracku-net: A novel deep convolutional neural network for pixelwise pavement crack detection. Struct. Control Health Monit. 27(8), 2551 (2020).
Article Google Scholar
Kim, B., Yuvaraj, N., Sri Preethaa, K. & Arun Pandian, R. Surface crack detection using deep learning with shallow cnn architecture for enhanced computation. Neural Computing Appl. 33(15), 92899305 (2021).
Article Google Scholar
GI, K.F.: A hierarchical neural network capable of visual pattern recognition. Neural Network 1 (1989).
Russakovsky, O. et al. Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211252 (2015).
Article MathSciNet Google Scholar
LeCun, Y. et al. Handwritten digit recognition with a back-propagation network. Adv. Neural Inf. Process. Syst. 2, 396404 (1989).
Google Scholar
Arel, I., Rose, D. C. & Karnowski, T. P. Deep machine learning-a new frontier in artificial intelligence research [research frontier]. IEEE comput. Intel. Mag. 5(4), 1318 (2010).
Article Google Scholar
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large- scale image recognition. arXiv preprint arXiv:1409.1556 (2014).
Chollet, F.: Xception: Deep learning with depthwise separable convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 12511258 (2017).
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770778 (2016).
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 28182826 (2016).
Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A.: Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI Conference on Artificial Intelligence (2017).
Andrew, G. et al. Efficient convolutional neural networks for mobile vision applications. Mobilenets. Available: http://arxiv.org/abs/1704.04861 (2017).
Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.-C.: Mobilenetv2: Inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 45104520 (2018).
Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 47004708 (2017).
Tan, M. & Le, Q. Efficient Net: Rethinking model scaling for convolutional neural networks. In International Conference on Machine Learning (eds Tan, M. & Le, Q.) 61056114 (PMLR, 2019).
Google Scholar
Sikha, O. & Bharath, B. Vgg16-random fourier hybrid model for masked face recognition. Soft Comput. 26, 116 (2022).
Article Google Scholar
Srihari, K. & Sikha, O. Partially supervised image captioning model for urban road views. In Intelligent Data Communication Technologies and Internet of Things (eds Srihari, K. & Sikha, O.) 5973 (Springer, 2022).
Chapter Google Scholar
Originally posted here:
Transfer learned deep feature based crack detection using support vector machine: a comparative study | Scientific ... - Nature.com
Read More..