Liu, Y. et al. Interaction-enhanced and time-aware graph convolutional network for successive point-of-interest recommendation in traveling enterprises. IEEE Trans. Ind. Inf. 19(1), 635643 (2022).
Article CAS Google Scholar
Qi, L. et al. Privacy-aware point-of-interest category recommendation in internet of things. IEEE Internet Things J. 9(21), 2139821408 (2022).
Article Google Scholar
Kang, D. & Yongtae, P. Review-based measurement of customer satisfaction in mobile service: Sentiment analysis and VIKOR approach. Expert Syst. Appl. 41(4), 10411050 (2014).
Article Google Scholar
Li, Y. M. & Li, T. Y. Deriving market intelligence from microblogs. Decis. Supp. Syst. 55(1), 206217 (2013).
Article Google Scholar
Rui, H., Liu, Y. & Whinston, A. Whose and what chatter matters? The effect of tweets on movie sales. Decis. Supp. Syst. 55(4), 863870 (2013).
Article Google Scholar
Karimi, Z. Opinion mining of Drug Reviews using Support Vector Machine for Multiple Instance Learning. In The 1st International and 3rd National Conference on Biomathematics (2022).
Caldo, D. et al. Machine learning algorithms distinguish discrete digital emotional fingerprints for web pages related to back pain. Sci. Rep. 13(1), 4654 (2023).
Article ADS CAS PubMed PubMed Central Google Scholar
Liu, Y. et al. a long short-term memory-based model for greenhouse climate prediction. Int. J. Intell. Syst. 37(1), 135151 (2022).
Article Google Scholar
Barzegar Gerdroodbary, M. Application of neural network on heat transfer enhancement of magnetohydrodynamic nanofluid. Heat Transf. Asian Res. 49(1), 197212 (2020).
Article Google Scholar
Ramezani, R., Maadi, M. & Khatami, S. M. A novel hybrid intelligent system with missing value imputation for diabetes diagnosis. Alex. Eng. J. 57(3), 18831891 (2018).
Article Google Scholar
Medhat, W., Hassan, A. & Korashy, H. Sentiment analysis algorithms and applications: A survey. Ain Shams engineering journal 5(4), 10931113 (2014).
Article Google Scholar
Karimi, Z., & Nasiri, K. Sentiment Analysis of Digikala Opinions using Adaptive Neuro-Fuzzy Inference System. In 4th International Conference on Soft Computing (2021).
Zhai, Z., Xu, H., Kang, B. & Jia, P. Exploiting effective features for chinese sentiment classification. Expert Syst. Appl. 38(8), 91399146 (2011).
Article Google Scholar
Hira, Z. M. & Gillies, D. F. A review of feature selection and feature extraction methods applied on microarray data. Adv. Bioinf. 1, 113 (2015).
Google Scholar
Gou, J. et al. Discriminative globality and locality preserving graph embedding for dimensionality reduction. Expert Syst. Appl. 144, 113079 (2020).
Article Google Scholar
Karimi, Z. & Shiry Ghidary, S. Semi-supervised classification in stratified spaces by considering non-interior points using Laplacian behavior. Neurocomputing 239, 223231 (2017).
Article Google Scholar
Karimi, Z. & Shiry Ghidary, S. Semi-supervised metric learning in stratified spaces via intergrating local constraints and information-theoretic non-local constraints. Neurocomputing 312, 165176 (2018).
Article Google Scholar
Wang, Y., Chen, S., Xue, H. & Fu, Z. Semi-supervised classification learning by discrimination-aware manifold regularization. Neurocomputing 147, 299306 (2015).
Article Google Scholar
Yang, B., Xiang, M. & Zhang, Y. Multi-manifold discriminant Isomap for visualization and classification. Pattern Recognit. 55, 215230 (2016).
Article ADS MATH Google Scholar
Elhamifar, E. & Vidal, R. Sparse manifold clustering and embedding. Adv. Neural Inf. Process. Syst. 24, 1 (2011).
Google Scholar
Zhao, G., Zhou, Z. & Zhang, J. Theoretical framework in graph embedding-based discriminant dimensionality reduction. Signal Process. 189, 108289 (2021).
Article Google Scholar
Zhao, G., Zhou, Z., Sun, L. & Zhang, J. Effective weight function in graphs-based discriminant neighborhood embedding. Int. J. Mach. Learn. Cybern. 14(1), 347360 (2023).
Article Google Scholar
Jahanbakhsh Gudakahriz, S., Eftekhari Moghadam, A. M. & Mahmoudi, F. Opinion texts clustering using manifold learning based on sentiment and semantics analysis. Sci. Program. 1, 115 (2021).
Google Scholar
Kim, K. & Lee, J. Sentiment visualization and classification via semi-supervised nonlinear dimensionality reduction. Pattern Recognit. 47(2), 758768 (2014).
Article ADS Google Scholar
Kim, K. An improved semi-supervised dimensionality reduction using feature weighting: Application to sentiment analysis. Expert Syst. Appl. 109, 4965 (2018).
Article Google Scholar
Li, J. Unsupervised robust discriminative manifold embedding with self-expressiveness. Neural Netw. 113, 102115 (2019).
Article PubMed MATH Google Scholar
Wright, J. et al. Sparse representation for computer vision and pattern recognition. Proc. IEEE 98(6), 10311044 (2010).
Article Google Scholar
Song, M., Chen, C., Bu, J. & Sha, T. Image-based facial sketch-to-photo synthesis via online coupled dictionary learning. Inf. Sci. 193, 233246 (2012).
Article Google Scholar
Yang, Y. et al. Expression transfer for facial sketch animation. Signal Process. 91(11), 24652477 (2011).
Article Google Scholar
Li, W., Zhang, J. & Dai, Q. H. Video denoising using shape-adaptive sparse representation over similar spatio-temporal patches. Signal Process.: Image Commun. 26(45), 250265 (2011).
Google Scholar
Jin, X., Wu, Y., Xu, Y. & Sun, C. Research on image sentiment analysis technology based on sparse representation. CAAI Trans. Intell. Technol. 7(3), 354368 (2022).
Article Google Scholar
Jain, P. K., Quamer, W., Pamula, R. & Saravanan, V. SpSAN: Sparse self-attentive network-based aspect-aware model for sentiment analysis. J. Ambient. Intell. Humaniz. Comput. 14(4), 30913108 (2023).
Article Google Scholar
Gu, X., Lu, L., Qiu, S., Zou, Q. & Yang, Z. Sentiment key frame extraction in user-generated micro-videos via low-rank and sparse representation. Neurocomputing 410, 441453 (2020).
Article Google Scholar
Karimi, Z., & Ramezani, R. Sparse Representation for Sentiment Analysis. In 2020 6th Iranian Conference on Signal Processing and Intelligent Systems (ICSPIS) (2020).
Dau, A., Salim, N., Rabiu, I. & Osman, A. Weighted aspect-based opinion mining using deep learning for recommender system. Expert Syst. Appl. 140, 112871 (2020).
Article Google Scholar
Kang, M., Ahn, J. & Lee, K. Opinion mining using ensemble text hidden Markov models for text classification. Expert Syst. Appl. 94, 218227 (2018).
Article Google Scholar
Kobayashi, N., Inui, K., Matsumoto, Y. Extracting aspect-evaluation and aspect-of relations in opinion mining. In Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL), Prague (2007).
Somprasertsri, G., & Lalitrojwong, P. Automatic product feature extraction from online product reviews using maximum entropy with lexical and syntactic features. In 2008 IEEE International Conference on Information Reuse and Integration (2008).
Tan, S. & Zhang, J. An empirical study of sentiment analysis for chinese documents. Expert Syst. Appl. 34(4), 26222629 (2008).
Article Google Scholar
Ogura, H., Amano, H. & Kondo, M. Comparison of metrics for feature selection in imbalanced text classification. Expert Syst. Appl. 38(5), 49784989 (2011).
Article Google Scholar
Wang, S., Li, D., Song, X., Wei, Y. & Li, H. A feature selection method based on improved fishers discriminant ratio for text sentiment classification. Expert Syst. Appl. 38(7), 86968702 (2011).
Article Google Scholar
Tang, H. & Tang, C. X. A survey on sentiment detection of reviews. Expert Syst. Appl. 36(7), 1076010773 (2009).
Article Google Scholar
Abbasi, A., Chen, H. & Salem, A. Sentiment analysis in multiple languages: Feature selection for opinion classification in web forums. ACM Trans. Inf. Syst. (TOIS) 26(3), 134 (2008).
Article Google Scholar
Bai, X. Predicting consumer sentiments from online text. Decis. Support Syst. 50(4), 732742 (2011).
Article Google Scholar
Ye, Q., Zhang, Z. & Law, R. Sentiment classification of online reviews to travel destinations by supervised machine learning approaches. Expert Syst. Appl. 36(3), 65276535 (2009).
Article Google Scholar
Cekik, R. & Uysal, A. K. A novel filter feature selection method using rough set for short text data. Expert Syst. Appl. 160, 113691 (2020).
Article Google Scholar
Koncz, P., & Paralic, J. An approach to feature selection for sentiment analysis. In 2011 15th IEEE International Conference on Intelligent Engineering Systems (2011).
Ahmad, S. R., Bakar, A. A., & Yaakub, M. R. Metaheuristic algorithms for feature selection in sentiment analysis. In 2015 Science and Information Conference (SAI) (2015).
Gokalp, O., Tasci, E. & Ugur, A. A novel wrapper feature selection algorithm based on iterated greedy metaheuristic for sentiment classification. Expert Syst. Appl. 146, 113176 (2020).
Article Google Scholar
Balakrishnan, P. V., Gupta, R. & Jacob, V. S. Development of hybrid genetic algorithms for product line designs. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 34(1), 468483 (2004).
Article Google Scholar
Liu, H. & Lei, Y. Toward integrating feature selection algorithms for classification and clustering. IEEE Trans. Knowl. Data Eng. 17(4), 491502 (2005).
Article Google Scholar
Jun, S., Park, S.-S. & Jang, D.-S. Document clustering method using dimension reduction and support vector clustering to overcome sparseness. Expert Syst. Appl. 41(7), 32043212 (2014).
Article Google Scholar
Mao, Y., Balasubramanian, K., Lebanon, G. Dimensionality reduction for text using domain knowledge. In Proceedings of the 23rd International Conference on Computational Linguistics: Posters, Stroudsburg, PA, USA (2010).
Ma, M., Deng, T., Ning, W. & Yanmei, C. Semi-supervised rough fuzzy Laplacian Eigenmaps for dimensionality reduction. Int. J. Mach. Learn. Cybern. 10, 397411 (2019).
Article Google Scholar
Excerpt from:
Manifold-based sparse representation for opinion mining | Scientific ... - Nature.com
Read More..