Ostrom, Q. T. et al. CBTRUS statistical report: primary        brain and other central nervous system tumors diagnosed in        the United States in 20162020. Neuro-Oncol        25, iv1iv99 (2023).      
        Article PubMed                Google Scholar      
        Weller, M. et al. Glioma. Nat. Rev. Dis. Primer        1, 15017 (2015).      
        Article         Google Scholar      
        Yang, K. et al. Glioma targeted therapy: insight into        future of molecular approaches. Mol. Cancer        21, 39 (2022).      
        Article        CAS PubMed        PubMed        Central         Google Scholar      
        Stupp, R. et al. Radiotherapy plus concomitant and adjuvant        temozolomide for glioblastoma. N. Engl. J. Med.        352, 987996 (2005).      
        Article CAS PubMed                Google Scholar      
        Hegi, M. E. et al. MGMT gene silencing and benefit from        temozolomide in glioblastoma. N. Engl. J. Med.        352, 9971003 (2005).      
        Article CAS PubMed                Google Scholar      
        Louis, D. N. et al. The 2021 WHO classification of tumors        of the central nervous system: a summary.        Neuro-Oncol 23, 12311251 (2021).      
        Article CAS PubMed        PubMed        Central         Google Scholar      
        Horbinski, C., Berger, T., Packer, R. J. & Wen, P. Y.        Clinical implications of the 2021 edition of the WHO        classification of central nervous system tumours. Nat.        Rev. Neurol. 18, 515529 (2022).      
        Article        PubMed                Google Scholar      
        Echle, A. et al. Deep learning in cancer pathology: a new        generation of clinical biomarkers. Br. J. Cancer        124, 686696 (2021).      
        Article        PubMed                Google Scholar      
        Shmatko, A., Ghaffari Laleh, N., Gerstung, M. & Kather, J.        N. Artificial intelligence in histopathology: enhancing        cancer research and clinical oncology. Nat. Cancer        3, 10261038 (2022).      
        Article        PubMed                Google Scholar      
        van der Laak, J., Litjens, G. & Ciompi, F. Deep learning in        histopathology: the path to the clinic. Nat. Med.        27, 775784 (2021).      
        Article        PubMed                Google Scholar      
        Zhang, P. et al. Effective nuclei segmentation with sparse        shape prior and dynamic occlusion constraint for        glioblastoma pathology images. J. Med. Imaging        6, 017502 (2019).      
        Article         Google Scholar      
        Li, X., Wang, Y., Tang, Q., Fan, Z. & Yu, J. Dual U-Net for        the segmentation of overlapping glioma nuclei. IEEE        Access 7, 8404084052 (2019).      
        Article                Google Scholar      
        Kurc, T. et al. Segmentation and classification in digital        pathology for glioma research: challenges and deep learning        approaches. Front. Neurosci. 14, 27 (2020).      
        Article PubMed        PubMed        Central         Google Scholar      
        Xu, Y. et al. Large scale tissue histopathology image        classification, segmentation, and visualization via deep        convolutional activation features. BMC        Bioinformatics 18, 281 (2017).      
        Article        PubMed        PubMed        Central         Google Scholar      
        Fukuma, K., Surya Prasath, V. B., Kawanaka, H., Aronow, B.        J. & Takase, H. A study on feature extraction and disease        stage classification for Glioma pathology images. In        2016 IEEE International Conference on Fuzzy Systems        (FUZZ-IEEE) 21502156 https://doi.org/10.1109/FUZZ-IEEE.2016.7737958        (2016).      
        Kalra, S. et al. Pan-cancer diagnostic consensus through        searching archival histopathology images using artificial        intelligence. Npj Digit. Med. 3, 115 (2020).      
        Article                Google Scholar      
        Winkelmaier, G., Koch, B., Bogardus, S., Borowsky, A. D. &        Parvin, B. Biomarkers of tumor heterogeneity in        glioblastoma multiforme cohort of TCGA. Cancers        15, 2387 (2023).      
        Article CAS PubMed        PubMed        Central         Google Scholar      
        Yuan, M. et al. Image-based subtype classification for        glioblastoma using deep learning: prognostic significance        and biologic relevance. JCO Clin. Cancer Inform.        8, e2300154, https://doi.org/10.1200/CCI.23.00154        (2024).      
        Article PubMed                Google Scholar      
        Liu, X.-P. et al. Clinical significance and molecular        annotation of cellular morphometric subtypes in lower-grade        gliomas discovered by machine learning. Neuro-Oncol        25, 6881 (2023).      
        Article CAS PubMed                Google Scholar      
        Song, J. et al. Enhancing spatial transcriptomics analysis        by integrating image-aware deep learning methods. in        Biocomputing 2024 450463 (WORLD SCIENTIFIC, 2023).        https://doi.org/10.1142/9789811286421_0035.      
        Zadeh Shirazi, A. et al. A deep convolutional neural        network for segmentation of whole-slide pathology images        identifies novel tumour cell-perivascular niche        interactions that are associated with poor survival in        glioblastoma. Br. J. Cancer 125, 337350        (2021).      
        Article        PubMed        PubMed        Central         Google Scholar      
        Zheng, Y., Carrillo-Perez, F., Pizurica, M., Heiland, D. H.        & Gevaert, O. Spatial cellular architecture predicts        prognosis in glioblastoma. Nat. Commun. 14,        4122 (2023).      
        Article        CAS PubMed        PubMed        Central         Google Scholar      
        Luo, J., Pan, M., Mo, K., Mao, Y. & Zou, D. Emerging role        of artificial intelligence in diagnosis, classification and        clinical management of glioma. Semin. Cancer Biol.        91, 110123 (2023).      
        Article        CAS PubMed                Google Scholar      
        Zadeh Shirazi, A. et al. The application of deep        convolutional neural networks to brain cancer images: a        survey. J. Pers. Med. 10, 224 (2020).      
        Article PubMed        PubMed        Central         Google Scholar      
        Sotoudeh, H. et al. Artificial intelligence in the        management of glioma: era of personalized medicine.        Front. Oncol. 9, 768 (2019).      
        Article PubMed        PubMed        Central         Google Scholar      
        Philip, A. K., Samuel, B. A., Bhatia, S., Khalifa, S. A. M.        & El-Seedi, H. R. Artificial intelligence and precision        medicine: a new frontier for the treatment of brain tumors.        Life 13, 24 (2023).      
        Article CAS         Google Scholar      
        Jin, W. et al. Artificial intelligence in glioma imaging:        challenges and advances. J. Neural Eng. 17,        021002 (2020).      
        Article PubMed                Google Scholar      
        C, M. et al. Artificial intelligence in brain tumor        imaging: a step toward personalized medicine. Curr.        Oncol. 30, 26732701 (2023).      
        Article        PubMed        PubMed        Central         Google Scholar      
        Liu, Y. & Wu, M. Deep learning in precision medicine and        focus on glioma. Bioeng. Transl. Med. 8,        e10553 (2023).      
        Article CAS PubMed        PubMed        Central         Google Scholar      
        Bhatele, K. R. & Bhadauria, S. S. Machine learning        application in Glioma classification: review and comparison        analysis. Arch. Comput. Methods Eng. 29,        247274 (2022).      
        Article                Google Scholar      
        Muhammad, K., Khan, S., Ser, J. D. & Albuquerque, V. H. C.        Deep learning for multigrade brain tumor classification in        smart healthcare systems: a prospective survey. IEEE        Trans. Neural Netw. Learn. Syst. 32, 507522        (2021).      
        Article        PubMed                Google Scholar      
        Zhao, R. & Krauze, A. Survival prediction in gliomas:        current state and novel approaches. Exon Publ.        151169 https://doi.org/10.36255/exonpublications.gliomas.2021.chapter9        (2021).      
        Alleman, K. et al. Multimodal deep learning-based        prognostication in glioma patients: a systematic review.        Cancers 15, 545 (2023).      
        Article PubMed        PubMed        Central         Google Scholar      
        Wijethilake, N. et al. Glioma survival analysis empowered        with data engineeringa survey. IEEE Access        9, 4316843191 (2021).      
        Article                Google Scholar      
        Faust, K. et al. Integrating morphologic and molecular        histopathological features through whole slide image        registration and deep learning. Neuro-Oncol. Adv.        4, vdac001 (2022).      
        Article         Google Scholar      
        Pytlarz, M., Wojnicki, K., Pilanc, P., Kaminska, B. &        Crimi, A. Deep learning glioma grading with the tumor        microenvironment analysis protocol for comprehensive        learning, discovering, and quantifying microenvironmental        features. J. Imaging Inform. Med. https://doi.org/10.1007/s10278-024-01008-x        (2024).      
        McLendon, R. et al. Comprehensive genomic characterization        defines human glioblastoma genes and core pathways.        Nature 455, 10611068 (2008).      
        Article CAS         Google Scholar      
        Brennan, C. W. et al. The somatic genomic landscape of        glioblastoma. Cell 155, 462477 (2013).      
        Article        CAS PubMed        PubMed        Central         Google Scholar      
        The Cancer Genome Atlas Research Network. Comprehensive,        Integrative Genomic Analysis of Diffuse Lower-Grade        Gliomas. N. Engl. J. Med. 372, 24812498        (2015).      
        Mobadersany, P. et al. Predicting cancer outcomes from        histology and genomics using convolutional networks.        Proc. Natl. Acad. Sci. 115, E2970E2979        (2018).      
        Article CAS PubMed        PubMed        Central         Google Scholar      
        Hewitt, K. J. et al. Direct image to subtype prediction for        brain tumors using deep learning. Neuro-Oncol. Adv.        5, vdad139 (2023).      
        Article         Google Scholar      
        Nasrallah, M. P. et al. Machine learning for cryosection        pathology predicts the 2021 WHO classification of glioma.        Med 4, 526540.e4 (2023).      
        Article        PubMed                Google Scholar      
        Wang, W. et al. Neuropathologist-level integrated        classification of adult-type diffuse gliomas using deep        learning from whole-slide pathological images. Nat.        Commun. 14, 6359 (2023).      
        Article        CAS PubMed        PubMed        Central         Google Scholar      
        Im, S. et al. Classification of diffuse glioma subtype from        clinical-grade pathological images using deep transfer        learning. Sensors 21, 3500 (2021).      
        Article PubMed        PubMed        Central         Google Scholar      
        Li, Z. et al. Vision transformer-based weakly supervised        histopathological image analysis of primary brain tumors.        iScience 26, 105872 (2023).      
        Article        CAS PubMed                Google Scholar      
        Shi, L. et al. Contribution of whole slide imaging-based        deep learning in the assessment of intraoperative and        postoperative sections in neuropathology. Brain        Pathol 33, e13160 (2023).      
        Article PubMed        PubMed        Central         Google Scholar      
        Hou, L. et al. Patch-based convolutional neural network for        whole slide tissue image classification. In 2016        IEEE Conference on Computer Vision and Pattern        Recognition (CVPR) 24242433 https://doi.org/10.1109/CVPR.2016.266        (2016).      
        Jin, L. et al. Artificial intelligence neuropathologist for        glioma classification using deep learning on hematoxylin        and eosin stained slide images and molecular markers.        Neuro-Oncol 23, 4452 (2021).      
        Article CAS PubMed                Google Scholar      
        Jose, L. et al. Artificial intelligenceassisted        classification of gliomas using whole slide images.        Arch. Pathol. Lab. Med. 147, 916924 (2022).      
        Article                Google Scholar      
        Wang, X., Price, S. & Li, C. Multi-task Learning of        Histology and Molecular Markers for Classifying Diffuse        Glioma. In Medical Image Computing and Computer Assisted        Intervention  MICCAI 2023 (eds. Greenspan, H. et al.)        551561 (Springer Nature Switzerland, Cham, 2023). https://doi.org/10.1007/978-3-031-43990-2_52.      
        Hsu, W.-W. et al. A weakly supervised deep learning-based        method for glioma subtype classification using WSI and        mpMRIs. Sci. Rep. 12, 6111 (2022).      
        Article        CAS PubMed        PubMed        Central         Google Scholar      
        Wang, X. et al. Combining radiology and pathology for        automatic glioma classification. Front. Bioeng.        Biotechnol. 10, 841958 (2022).      
        Article        PubMed        PubMed        Central         Google Scholar      
        Mallya, M. & Hamarneh, G. Deep multimodal guidance for        medical image classification. in Medical Image Computing        and Computer Assisted InterventionMICCAI 2022 (eds.        Wang, L., Dou, Q., Fletcher, P. T., Speidel, S. & Li, S.)        298308 (Springer Nature Switzerland, 2022). https://doi.org/10.1007/978-3-031-16449-1_29.      
        Kim, G. J., Lee, T., Ahn, S., Uh, Y. & Kim, S. H. Efficient        diagnosis of IDH-mutant gliomas: 1p/19qNET assesses 1p/19q        codeletion status using weakly-supervised learning. Npj        Precis. Oncol. 7, 19 (2023).      
                Google Scholar      
Continued here:
Applications of artificial intelligence in the analysis of histopathology images of gliomas: a review | npj Imaging - Nature.com
Read More..