Day, S. D. & Bassuk, N. L. A review of the effects of soil compaction and amelioration treatments on landscape trees. J. Arboric. 20(1), 917 (1994).
Google Scholar
Batey, T. Soil compaction and soil management: A review. Soil Use Manag. 25(4), 335345 (2009).
Article Google Scholar
Nawaz, M. F., Bourrie, G. & Trolard, F. Soil compaction impact and modelling: A review. Agron. Sustain. Dev. 33, 291309 (2013).
Article Google Scholar
Lipiec, J. & Hatano, R. Quantification of compaction effects on soil physical properties and crop growth. Geoderma 116(12), 107136 (2003).
Article ADS Google Scholar
Zhang, S., Grip, H. & Lvdahl, L. Effect of soil compaction on hydraulic properties of two loess soils in China. Soil Till. Res. 90(12), 117125 (2006).
Article Google Scholar
Shah, A. N. et al. Soil compaction effects on soil health and cropproductivity: An overview. Environ. Sci. Pollut. Res. 24, 1005610067 (2017).
Article Google Scholar
Brevik, E. C. & Sauer, T. J. The past, present, and future of soils and human health studies. Soil 1(1), 3546 (2015).
Article ADS Google Scholar
Alpers, W., Zhao, Y., Mouche, A. A. & Chan, P. W. A note on radar signatures of hydrometeors in the melting layer as inferred from Sentinel-1 SAR data acquired over the ocean. Remote Sens. Environ. 253, 112177 (2021).
Article Google Scholar
Coopersmith, E. J., Minsker, B. S., Wenzel, C. E. & Gilmore, B. J. Machine learning assessments of soil drying for agricultural planning. Comput. Electron. Agric. 104, 93104 (2014).
Article Google Scholar
Rahimi-Ajdadi, F. & Abbaspour-Gilandeh, Y. A review on the soil compaction measurement systems. In Conference Proceedings, First International Conference on Organic vs Conventional Agriculture, pp. 17 (2017).
Raper, R. L., & Mac Kirby, J. Soil compaction: How to do it, undo it, or avoid doing it. Presented at the 2006 Agricultural Equipment Technology Conference, Louisville, Kentucky, USA, 12-14 February, pp. 115 (The American Society of Agricultural and Biological Engineers, 2006).
Ziyaee, A. & Roshani, M. R. A survey study on soil compaction problems for new methods in agriculture. Int. Res. J. Appl. Basic Sci. 3(9), 17871801 (2012).
Google Scholar
Brevik, E. C, & Sauer, T. J. The soil cone penetrometer test: Uses, principles, and applications. Vadose Zone J. 5, 5865 (2015).
Google Scholar
Chan, Y. et al. Prediction of soil compaction degree in typical soils of Beijing city by a machine learning algorithm. Soil Till. Res. 205, 104800 (2021).
Google Scholar
Hemmat, A., Karimzadeh, S. & Karimi, A. Comparison of artificial neural networks and regression models for predicting soil cone penetration resistance. Soil Till. Res. 143, 3845 (2014).
Google Scholar
Abbaspour-Gilandeh, Y. & Rahimi-Ajdadi, F. Modeling of soil compaction using neural networks and regression tree: A case study in Iran. J. Agric. Sci. Technol. 18(5), 12711282 (2016).
Google Scholar
Clark, R. N. Quantitative models of soil genesis. Geoderma 89(12), 126 (1999).
Google Scholar
Mulqueen, J. A., McBratney, A. B. & Minasny, B. The measurement of soil strength and its application to tillage. Aust. J. Soil Res. 15(2), 137149 (1977).
Google Scholar
Kumar, A., Chen, Y., Sadek, M.A.-A. & Rahman, S. Soil cone index in relation to soil texture, moisture content, and bulk density for no-tillage and conventional tillage. Agric. Eng. Int. CIGR J. 14(1), 2637 (2012).
Google Scholar
Hummel, J. W., Ahmad, I. S., Newman, S. C., Sudduth, K. A. & Drummond, S. T. Simultaneous soil moisture and cone index measurement. Trans. ASAE 47(3), 607 (2004).
Article Google Scholar
Zajcov, K. & Chuman, T. Application of ground penetrating radar methods in soil studies: A review. Geoderma 343, 116129 (2019).
Article ADS Google Scholar
Tekeste, M. Z., Raper, R. L., & Schwab, E. B. Soil drying effects on soil strength and depth of hardpan layers as determined from cone index data. Agric. Eng. Int.: CIGR J. X, Manuscript LW 07 010 (2008).
Google Scholar
Jabro, J. D., Stevens, W. B., Iversen, W. M., Sainju, U. M. & Allen, B. L. Soil cone index and bulk density of a sandy loam under no-till and conventional tillage in a corn-soybean rotation. Soil Till. Res. 206, 104842 (2021).
Article Google Scholar
Aase, J. K., Bjorneberg, D. L. & Sojka, R. E. Zonesubsoiling relationships to bulk density and cone index on a furrow-irrigated soil. Trans. ASAE 44(3), 577 (2001).
Google Scholar
Way, T. R., Kishimoto, T., Torbert, A. H., Burt, E. C. & Bailey, A. C. Tractor tire aspect ratio effects on soil bulk density and cone index. J. Terramech. 46(1), 2734 (2009).
Article Google Scholar
Agodzo, S. K, & Adama, I. Bulk density, cone index and water content relations for some Ghanian soils. Invited presentations at the College on Soil Physics, 2003. Agricultural Engineering Department, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana. (2004).
Sojka, R. E., Busscher, W. J. & Lehrsch, G. A. In situ strength, bulk density, and water content relationships of a Durinodic Xeric Haplocalcid soil. Soil Sci. 166(8), 520529 (2001).
Article ADS CAS Google Scholar
Hulugalle, N. R. & Entwistle, P. Soil properties, nutrient uptake and crop growth in an irrigated Vertisol after nine years of minimum tillage. Soil Till. Res. 42(12), 1532 (1997).
Article Google Scholar
Raper, R. L. Agricultural traffic impacts on soil. J. Terrramech. 42(34), 259280 (2005).
Article Google Scholar
Ayers, P. D. & Perumpral, J. V. Moisture and density effect on cone index. Trans. ASAE 25(5), 11691172 (1982).
Article Google Scholar
Mason, G. L. et al. An overview of methods to convert cone index to bevameter parameters. J. Terrramech. 87, 19 (2020).
Article Google Scholar
Elbanna, E. B. & Witney, B. D. Cone penetration resistance equation as a function of the clay ratio, soil moisture content and specific weight. J. Terrramech. 24(1), 4156 (1987).
Article Google Scholar
Liu, X. et al. Measurement of soil water content using ground-penetrating radar: A review of current methods. Int. J. Digit. Earth 12(1), 95118 (2019).
Article ADS Google Scholar
Sun, Y., Lammers, P. S. & Damerow, L. A dual sensor for simultaneous investigation of soil cone index and moisture content. Agric. Forschung. J. 9(1), E12E15 (2003).
Google Scholar
Rahman, M. M. et al. Mapping surface roughness and soil moisture using multi-angle radar imagery without ancillary data. Remote Sens. Environ. 112(2), 391402 (2008).
Article ADS Google Scholar
Ahmadi, H. & Mollazade, K. Effect of plowing depth and soil moisture content on reduced secondary tillage. Agric. Eng. Int. CIGR EJournal 11, 19 (2009).
Google Scholar
Oskoui, K. E. & Witney, B. D. The determination of plough draught-Part I. Prediction from soil and meteorological data with cone index as the soil strength parameter. J. Terramech. 19(2), 97106 (1982).
Article Google Scholar
Son, J., Jung, I., Park, K., & Han, B. Tracking-by-segmentation with online gradient boosting decision tree. In Proceedings of the IEEE International Conference on Computer Vision, 30563064 (2015).
Anghel, A., Papandreou, N., Parnell, T., De Palma, A., & Pozidis, H. Benchmarking and optimization of gradient boosting decision tree algorithms. arXiv preprint arXiv:1809.04559 (2018).
Machado, M. R., Karray, S., & de Sousa, I. T. LightGBM: An effective decision tree gradient boosting method to predict customer loyalty in the finance industry. In 2019 14th International Conference on Computer Science and Education (ICCSE), 11111116. IEEE (2019).
Jafari, A., Khademi, H., Finke, P. A., Van de Wauw, J. & Ayoubi, S. Spatial prediction of soil great groups by boosted regression trees using a limited point dataset in an arid region, southeastern Iran. Geoderma 232, 148163 (2014).
Article ADS Google Scholar
Dube, T., Mutanga, O., Abdel-Rahman, E. M., Ismail, R. & Slotow, R. Predicting Eucalyptus spp. stand volume in Zululand, South Africa: An analysis using a stochastic gradient boosting regression ensemble with multi-source data sets. Int. J. Remote Sens. 36(14), 37513772 (2015).
Article Google Scholar
Sauer, B. & Henderson, N. Site-specific DNA recombination in mammalian cells by the Cre recombinase of bacteriophage P1. Proc. Natl. Acad. Sci. 85(14), 51665170 (1988).
Article ADS CAS PubMed PubMed Central Google Scholar
Pham, T. D. et al. Comparison of machine learning methods for estimating mangrove above-ground biomass using multiple source remote sensing data in the red river delta biosphere reserve, Vietnam. Remote Sens. 12(8), 1334 (2020).
Article ADS Google Scholar
Aali, K. A., Parsinejad, M. & Rahmani, B. Estimation of saturation percentage of soil using multiple regression, ANN, and ANFIS techniques. Comput. Inf. Sci. 2(3), 127136 (2009).
Google Scholar
Goh, A. T. C. Back-propagation neural networks for modeling complex systems. Artif. Intell. Eng. 9(3), 143151 (1995).
Article Google Scholar
Kushwaha, R. L. & Zhang, Z. X. Evaluation of factors and current approaches related to computerized design of tillage tools: A review. J. Terrramech. 35(2), 6986 (1998).
Article Google Scholar
Khalilian, M., Shakib, H. & Basim, M. C. On the optimal performance-based seismic design objective for steel moment resisting frames based on life cycle cost. J. Build. Eng. 44, 103091 (2021).
Article Google Scholar
Pourmoghadam, Z. et al. Intrauterine administration of autologous hCG-activated peripheral blood mononuclear cells improves pregnancy outcomes in patients with recurrent implantation failure; A double-blind, randomized control trial study. J. Reprod. Immunol. 142, 103182 (2020).
Article CAS PubMed Google Scholar
Babaeian, E. et al. Ground, proximal, and satellite remote sensing of soil moisture. Rev. Geophys. 57(2), 530616 (2019).
Article ADS Google Scholar
Faure, A. G., Viana, J. D. & Mata, D. Penetration resistance value along compaction curves. J. Geotech. Eng. 120(1), 4659 (1994).
Article Google Scholar
Safi, S. R., Gotoh, T., Iizawa, T. & Nakai, S. Development and regeneration of composite of cationic gel and iron hydroxide for adsorbing arsenic from ground water. Chemosphere 217, 808815 (2019).
Article ADS CAS PubMed Google Scholar
Mehdizadeh, S. & Nikbakht, A. M. Predicting soil cone index using machine learning algorithms. J. Agric. Sci. Technol. 22(2), 327337 (2020).
Google Scholar
Read the original here:
Predicting soil cone index and assessing suitability for wind and solar farm development in using machine learning ... - Nature.com
Read More..