Page 436«..1020..435436437438..450460..»

The End of the Quantum Ice Age: Room Temperature Breakthrough – SciTechDaily

Conceptual art of the operating device, consisting of a nanopillar-loaded drum sandwiched by two periodically segmented mirrors, allowing the laser light to strongly interact with the drum quantum mechanically at room temperature. Credit: EPFL & Second Bay Studios

Researchers at EPFL have achieved a milestone in quantum mechanics by controlling quantum phenomena at room temperature, overcoming the longstanding barrier of needing extreme cold. This opens up new possibilities for quantum technology applications and the study of macroscopic quantum systems.

In the realm of quantum mechanics, the ability to observe and control quantum phenomena at room temperature has long been elusive, especially on a large or macroscopic scale. Traditionally, such observations have been confined to environments near absolute zero, where quantum effects are easier to detect. However, the requirement for extreme cold has been a major hurdle, limiting practical applications of quantum technologies.

Now, a study led by Tobias J. Kippenberg and Nils Johan Engelsen at EPFL, redefines the boundaries of whats possible. The pioneering work blends quantum physics and mechanical engineering to achieve control of quantum phenomena at room temperature.

Reaching the regime of room temperature quantum optomechanics has been an open challenge for decades, says Kippenberg. Our work realizes effectively the Heisenberg microscope long thought to be only a theoretical toy model.

In their experimental setup, published today (February 14) in Nature, the researchers created an ultra-low noise optomechanical system a setup where light and mechanical motion interconnect, allowing them to study and manipulate how light influences moving objects with high precision.

The crystal-like cavity mirrors with the drum in the middle. Credit: Guanhao Huang/EPFL

The main problem with room temperature is thermal noise, which perturbs delicate quantum dynamics. To minimize that, the scientists used cavity mirrors, which are specialized mirrors that bounce light back and forth inside a confined space (the cavity), effectively trapping it and enhancing its interaction with the mechanical elements in the system. To reduce the thermal noise, the mirrors are patterned with crystal-like periodic (phononic crystal) structures.

Another crucial component was a 4mm drum-like device called a mechanical oscillator, which interacts with light inside the cavity. Its relatively large size and design are key to isolating it from environmental noise, making it possible to detect subtle quantum phenomena at room temperature. The drum we use in this experiment is the culmination of many years of effort to create mechanical oscillators that are well-isolated from the environment, says Engelsen.

The techniques we used to deal with notorious and complex noise sources are of high relevance and impact to the broader community of precision sensing and measurement, says Guanhao Huang, one of the two PhD students leading the project.

The setup allowed the researchers to achieve optical squeezing, a quantum phenomenon where certain properties of light, like its intensity or phase, are manipulated to reduce the fluctuations in one variable at the expense of increasing fluctuations in the other, as dictated by Heisenbergs principle.

By demonstrating optical squeezing at room temperature in their system, the researchers showed that they could effectively control and observe quantum phenomena in a macroscopic system without the need for extremely low temperatures. Top of Form

The team believes the ability to operate the system at room temperature will expand access to quantum optomechanical systems, which are established testbeds for quantum measurement and quantum mechanics at macroscopic scales.

The system we developed might facilitate new hybrid quantum systems where the mechanical drum strongly interacts with different objects, such as trapped clouds of atoms, adds Alberto Beccari, the other PhD student leading the study. These systems are useful for quantum information, and help us understand how to create large, complex quantum states.

Reference: Room-temperature quantum optomechanics using an ultralow noise cavity by Guanhao Huang, Alberto Beccari, Nils J. Engelsen and Tobias J. Kippenberg, 14 February 2024, Nature. DOI: 10.1038/s41586-023-06997-3

See the article here:

The End of the Quantum Ice Age: Room Temperature Breakthrough - SciTechDaily

Read More..

URI program to help STEM professionals pivot into quantum information science careers – The University of Rhode Island

KINGSTON, R.I. Feb. 14, 2024 Wide commercial use of quantum computers may still be a decade away, but a shortage of skilled workers is already being felt across industries that will benefit from the revolutionary technology.

Quantum computing is going to have some very dramatic effects as we go forward, said Len Kahn, chair of the University of Rhode Islands Physics Department. Were trying to prepare. As quantum computing explodes, the workforce is not going to be prepared because theyre working with classical computers. There are millions of people involved in programming classical computers, but what theyre doing is almost antithetical to what happens in quantum computing.

To help fill the talent gap, URI is teaming with the MITRE Corp. on an initiative Quantum Pivot to help professionals with STEM experience build the skills and knowledge to transition into career pathways in quantum information science and technology.

URI is among an inaugural group of 27 higher education institutions across the U.S. that have been selected to take part in the National Science Foundations new Experiential Learning for Emerging and Novel Technologies, a program that aims to grow and diversify the workforce in key emerging technologies. In September, URI was awarded a three-year, $998,667 grant as one of the programs Pivot tracks, which provide STEM professionals in any field with experiential learning opportunities, training and mentoring to transition into careers in quantum information science and technology.

Quantum computers, which can perform some tasks millions of times faster than todays fastest supercomputers, have the ability to revolutionize technology affecting numerous industries, from machine learning to artificial intelligence, marketing and advertising to supply chain management, from pharmaceuticals to cybersecurity, to name a few.

While many of the quantum computers today are small-scale, experimental machines, companies such as IBM, a pioneer in the field, are making progress, Kahn said. IBM is doubling the number of quantum bits, or qubits, which store and process information in quantum computers, in its computer annually.

But as companies invest in quantum technologies, finding talented workers threatens to hold back progress. Only about one qualified candidate is available for every three quantum job openings and only half of quantum computing jobs are expected to be filled by 2025.

Right now, we dont have the workforce to meet the demand, Kahn said. Once quantum computing starts to take off, the catch-up is going to be very difficult. At URI, were contributing to the preparation of that workforce.

URI, which launched one of the first masters degree programs in quantum computing in 2021, has been investing in the field. This includes a research partnership with IBM that provides URI faculty and students access to IBMs cutting-edge quantum computing systems, while also adding faculty and post-doctoral researchers.

For the NSF initiative, URI will build on its established, one-year online Quantum Computing Graduate Certificate program, which will graduate its first cohort of students this spring.

The programs four courses give students the language and foundational knowledge needed to introduce them to the technology, Kahn said. Over the two semesters, students get a refresher in math, a basic understanding of the concepts of quantum mechanics, along with training in designing quantum algorithms and a fundamental understanding of applications such as quantum sensing, teleportation, cryptography, circuitry and communications. Threaded through the program are student projects in quantum computing, which provide students a portfolio to show prospective employers.The ability to focus on and research a project distinguishes URIs certificate program from other online programs.

Along with the online courses, students attend four in-person workshops two days per course where they will do hands-on experiments and have access to MITREs quantum technologies professionals, who can provide mentoring and career development.

MITRE adds a lot of expertise to this initiative, Kahn said. At their Princeton campus, they have 15 Ph.D.s doing only quantum. They also work with Department of Defense industries so they know what the needs are and where the needs are.

The NSF grant will also fund such areas as a remote lab for students, scholarships, and recruitment, with an eye toward diversifying the workforce, Kahn said. URI is working to recruit candidates through groups such as IBMs quantum computing consortium of students from historically Black colleges and universities, and professional societies that serve professionals from underrepresented communities.

An important part of this grant is to help diversify the workforce and make sure people from underrepresented communities get opportunities, Kahn said. URI and MITRE are dedicated to bringing a diverse culture to STEM fields.

View original post here:

URI program to help STEM professionals pivot into quantum information science careers - The University of Rhode Island

Read More..

Quantum realm controlled at room temperature for the first time – Earth.com

In the intricate world of quantum mechanics, mastering the observation and manipulation of quantum phenomena at room temperature has been a long-standing challenge, particularly when it comes to macroscopic scales.

Historically, the exploration of quantum effects has been largely confined to environments close to absolute zero, significantly hampering the practical deployment of quantum technologies due to the complexities and limitations imposed by the need for extreme cold.

This landscape is undergoing a transformative change, thanks to disruptive research led by Tobias J. Kippenberg and Nils Johan Engelsen at the cole Polytechnique Fdrale de Lausanne (EPFL).

Their study, a confluence of quantum physics and mechanical engineering, has achieved a milestone in controlling quantum phenomena at ambient temperatures, marking a significant departure from traditional constraints.

Reaching the regime of room temperature quantum optomechanics has been an open challenge since decades, explains Kippenberg. Our work realizes effectively the Heisenberg microscope long thought to be only a theoretical toy model.

At the core of their research is the development of an ultra-low noise optomechanical system.

This setup, where light and mechanical motion are intricately linked, facilitates the precise examination and manipulation of how light impacts moving objects.

A notable obstacle at room temperature is thermal noise, which disrupts delicate quantum dynamics. To counteract this, the team employed cavity mirrors adorned with crystal-like phononic crystal structures.

These mirrors enhance lights interaction with mechanical elements by confining it within a space, thus minimizing thermal noise.

A pivotal element in their experimental setup is a 4mm drum-like mechanical oscillator that interacts with light inside the cavity.

Its design and size are critical for shielding it from environmental noise, enabling the detection of quantum phenomena at room temperature.

The drum we use in this experiment is the culmination of many years of effort to create mechanical oscillators that are well-isolated from the environment, says Engelsen, highlighting the significance of this component.

Guanhao Huang, one of the PhD students leading the project, emphasizes the broader implications of their techniques in addressing complex noise sources, which hold considerable relevance for the precision sensing and measurement community.

One of the studys key achievements is the demonstration of optical squeezing at room temperature. This quantum phenomenon involves manipulating certain properties of light to reduce fluctuations in one variable while increasing them in another, a principle intrinsic to Heisenbergs uncertainty principle.

This breakthrough shows that quantum phenomena can be controlled and observed in macroscopic systems without the necessity for extremely low temperatures.

The researchers believe that their ability to operate the system at room temperature will make quantum optomechanical systems more accessible. These systems serve as crucial platforms for quantum measurement and understanding quantum mechanics at macroscopic scales.

Alberto Beccari, another PhD student pivotal to the study, anticipates that their work will pave the way for new hybrid quantum systems.

He envisages a future where the mechanical drum interacts with various entities, such as trapped clouds of atoms, offering promising avenues for quantum information and the creation of large, complex quantum states.

In summary, this groundbreaking research has ushered in a new era in quantum mechanics by achieving control of quantum phenomena at room temperature, a feat previously thought to be confined to the realms of theoretical models.

The pioneering work at EPFL, which intricately merges quantum physics with mechanical engineering, overcomes the longstanding barrier of thermal noise and introduces a novel, room-temperature-operable optomechanical system.

This innovation will allow broader access to quantum optomechanical systems, promising significant advancements in quantum measurement, information, and the exploration of complex quantum states.

Through their dedication and ingenuity, the team has expanded the boundaries of whats possible in quantum research while laying the foundation for future technologies that could revolutionize our understanding and application of quantum mechanics in the real world.

The full study was published in the journal Nature.

Like what you read? Subscribe to our newsletter for engaging articles, exclusive content, and the latest updates.

Check us out on EarthSnap, a free app brought to you by Eric Ralls and Earth.com.

Here is the original post:

Quantum realm controlled at room temperature for the first time - Earth.com

Read More..

Quantum Breakthrough: New Method Preserves Information Against All Odds – SciTechDaily

Theoretical physicists have found a way to potentially enhance quantum computer chips memory capabilities by ensuring information remains organized, similar to perpetually swirling coffee creamer, defying traditional physics expectations.

Add a dash of creamer to your morning coffee, and clouds of white liquid will swirl around your cup. But give it a few seconds, and those swirls will disappear, leaving you with an ordinary mug of brown liquid.

Something similar happens in quantum computer chipsdevices that tap into the strange properties of the universe at its smallest scaleswhere information can quickly jumble up, limiting the memory capabilities of these tools.

That doesnt have to be the case, said Rahul Nandkishore, associate professor of physics at the University of Colorado Boulder.

In a new coup for theoretical physics, he and his colleagues have used math to show that scientists could create, essentially, a scenario where the milk and coffee never mixno matter how hard you stir them.

The groups findings may lead to new advances in quantum computer chips, potentially providing engineers with new ways to store information in incredibly tiny objects.

Think of the initial swirling patterns that appear when you add cream to your morning coffee, said Nandkishore, senior author of the new study. Imagine if these patterns continued to swirl and dance no matter how long you watched.

Researchers still need to run experiments in the lab to make sure that these never-ending swirls really are possible. But the groups results are a major step forward for physicists seeking to create materials that remain out of balance, or equilibrium, for long periods of timea pursuit known as ergodicity breaking.

The teams findings were recently published in the journal Physical Review Letters.

The study, which includes co-authors David Stephen and Oliver Hart, postdoctoal researchers in physics at CU Boulder, hinges on a common problem in quantum computing.

Normal computers run on bits, which take the form of zeros or ones. Nandkishore explained that quantum computers, in contrast, employ qubits, which can exist as zero, one or, through the strangeness of quantum physics, zero and one at the same time. Engineers have made qubits out of a wide range of things, including individual atoms trapped by lasers or tiny devices called superconductors.

But just like that cup of coffee, qubits can become easily mixed up. If you flip, for example, all of your qubits to one, theyll eventually flip back and forth until the entire chip becomes a disorganized mess.

In the new research, Nandkishore and his colleagues may have figured a way around that tendency toward mixing. The group calculated that if scientists arrange qubits into particular patterns, these assemblages will retain their informationeven if you disturb them using a magnetic field or a similar disruption. That could, the physicist said, allow engineers to build devices with a kind of quantum memory.

This could be a way of storing information, he said. You would write information into these patterns, and the information couldnt be degraded.

In the study, the researchers used mathematical modeling tools to envision an array of hundreds to thousands of qubits arranged in a checkerboard-like pattern.

The trick, they discovered, was to stuff the qubits into a tight spot. If qubits get close enough together, Nadkishore explained, they can influence the behavior of their neighbors, almost like a crowd of people trying to squeeze themselves into a telephone booth. Some of those people might be standing upright or on their heads, but they cant flip the other way without pushing on everyone else.

The researchers calculated that if they arranged these patterns in just the right way, those patterns might flow around a quantum computer chip and never degrademuch like those clouds of cream swirling forever in your coffee.

The wonderful thing about this study is that we discovered that we could understand this fundamental phenomenon through what is almost simple geometry, Nandkishore said.

The teams findings could influence a lot more than just quantum computers.

Nandkishore explained that almost everything in the universe, from cups of coffee to vast oceans, tends to move toward what scientists call thermal equilibrium. If you drop an ice cube into your mug, for example, heat from your coffee will melt the ice, eventually forming a liquid with a uniform temperature.

His new findings, however, join a growing body of research that suggests that some small organizations of matter can resist that equilibriumseemingly breaking some of the most immutable laws of the universe.

Were not going to have to redo our math for ice and water, Nandkishore said. The field of mathematics that we call statistical physics is incredibly successful for describing things we encounter in everyday life. But there are settings where maybe it doesnt apply.

Reference: Ergodicity Breaking Provably Robust to Arbitrary Perturbations by David T. Stephen, Oliver Hart and Rahul M. Nandkishore, 23 January 2024, Physical Review Letters. DOI: 10.1103/PhysRevLett.132.040401

View original post here:

Quantum Breakthrough: New Method Preserves Information Against All Odds - SciTechDaily

Read More..

Quantum computers get new design that makes them more "useful" – Earth.com

Quantum computing represents a frontier in science that promises to unlock mysteries beyond the reach of todays most advanced computers.

Natalia Chepiga, a quantum scientist at Delft University of Technology, is at the forefront of this exploration.

She has developed a groundbreaking guide aimed at enhancing quantum simulators, a subset of quantum computers designed to probe the depths of quantum physics.

This innovation could pave the way for unprecedented discoveries about the universe at its most fundamental level.

Quantum simulators stand as a beacon of potential in the scientific community, according to Chepiga.

Creating useful quantum computers and quantum simulators is one of the most important and debated topics in quantum science today, with the potential to revolutionize society, she states.

Unlike traditional computers, quantum simulators delve into quantum physics open problems, aiming to extend our grasp of the natural world.

The implications of such advancements are vast, touching upon various societal aspects, from finance and encryption to data storage.

A crucial aspect of developing effective quantum simulators is their ability to be controlled or manipulated, akin to having a steering wheel in a car.

A key ingredient of a useful quantum simulator is the possibility to control or manipulate it, Chepiga illustrates. Without this capability, a quantum simulators utility is severely limited.

To address this, Chepiga proposes a novel protocol in her paper, likening it to creating a steering wheel for quantum simulators.

This protocol is essentially a blueprint for constructing a fully controllable quantum simulator that can unlock new physics phenomena.

Chepigas protocol introduces a method for tuning quantum simulators by using not one, but two lasers with distinct frequencies or colors to excite atoms to different states.

This approach significantly enhances the simulators flexibility, allowing it to mimic a broader range of quantum systems.

Chepiga analogizes this advancement to the difference between viewing a cube as a flat sketch and exploring a three-dimensional cube in real space. Theoretically, introducing more lasers could add even more dimensions to what can be simulated.

The challenge of simulating the collective behavior of quantum systems with numerous particles is immense.

Current computers, including supercomputers, struggle to model systems beyond a few dozen particles without resorting to approximations due to the sheer volume of calculations required.

Quantum simulators, built from entangled quantum particles, offer a solution.

Entanglement is some sort of mutual information that quantum particles share between themselves. It is an intrinsic property of the simulator and therefore allows to overcome this computational bottleneck, Chepiga explains.

In essence, Chepigas research lays the groundwork for a new era of quantum computing. By enhancing the controllability of quantum simulators, she opens the door to exploring complex quantum systems more deeply and accurately than ever before.

This advancement furthers our understanding of the quantum realm and holds the promise of significant societal benefits, from more secure data encryption to solving problems currently beyond our reach.

Chepigas contribution to quantum science marks a significant step towards harnessing the full potential of quantum computing, setting the stage for discoveries that could fundamentally alter our understanding of the universe.

The full study was published in the Physical Review Letters.

Like what you read? Subscribe to our newsletter for engaging articles, exclusive content, and the latest updates.

Check us out on EarthSnap, a free app brought to you by Eric Ralls and Earth.com.

More:

Quantum computers get new design that makes them more "useful" - Earth.com

Read More..

Beyond Classical Physics: Scientists Discover New State of Matter With Chiral Properties – SciTechDaily

Researchers have identified a novel quantum state of matter with chiral currents, potentially revolutionizing electronics and quantum technologies. This breakthrough, confirmed through direct observation using the Italian Elettra synchrotron, holds vast applications in sensors, biomedicine, and renewable energy. Credit: SciTechDaily.com

An international research group has identified a novel state of matter, characterized by the presence of a quantum phenomenon known as chiral current.

These currents are generated on an atomic scale by a cooperative movement of electrons, unlike conventional magnetic materials whose properties originate from the quantum characteristic of an electron known as spin and their ordering in the crystal.

Chirality is a property of extreme importance in science, for example, it is fundamental also to understand DNA. In the quantum phenomenon discovered, the chirality of the currents was detected by studying the interaction between light and matter, in which a suitably polarized photon can emit an electron from the surface of the material with a well-defined spin state.

The discovery, published in Nature, significantly enriches our knowledge of quantum materials, of the search for chiral quantum phases, and of the phenomena that occur at the surface of materials.

The discovery of the existence of these quantum states, explains Federico Mazzola, researcher in Condensed matter physics at Ca Foscari University of Venice and leader of the research, may pave the way for the development of a new type of electronics that employs chiral currents as information carriers in place of the electrons charge. Furthermore, these phenomena could have an important implication for future applications based on new chiral optoelectronic devices, and a great impact in the field of quantum technologies for new sensors, as well as in the biomedical and renewable energy fields.

Born from a theoretical prediction, this study directly and for the first time verified the existence of this quantum state, until now enigmatic and elusive, thanks to the use of the Italian Elettra synchrotron. Until now, knowledge about the existence of this phenomenon was in fact limited to theoretical predictions for some materials. Its observation on the surfaces of solids makes it extremely interesting for the development of new ultra-thin electronic devices.

The research group, which includes national and international partners including the Ca Foscari University of Venice, the Spin Institute the CNR Materials Officina Institute, and the University of Salerno, investigated the phenomenon of a material already known to the scientific community for its electronic properties and for superconducting spintronics applications, but the new discovery has a broader scope, being much more general and applicable to a vast range of quantum materials.

These materials are revolutionizing quantum physics and the current development of new technologies, with properties that go far beyond those described by classical physics.

Reference: Signatures of a surface spinorbital chiral metal by Federico Mazzola, Wojciech Brzezicki, Maria Teresa Mercaldo, Anita Guarino, Chiara Bigi, Jill A. Miwa, Domenico De Fazio, Alberto Crepaldi, Jun Fujii, Giorgio Rossi, Pasquale Orgiani, Sandeep Kumar Chaluvadi, Shyni Punathum Chalil, Giancarlo Panaccione, Anupam Jana, Vincent Polewczyk, Ivana Vobornik, Changyoung Kim, Fabio Miletto-Granozio, Rosalba Fittipaldi, Carmine Ortix, Mario Cuoco and Antonio Vecchione, 7 February 2024, Nature. DOI: 10.1038/s41586-024-07033-8

Original post:

Beyond Classical Physics: Scientists Discover New State of Matter With Chiral Properties - SciTechDaily

Read More..

Functioning quantum internet makes giant stride closer to reality – Earth.com

In an era where the digital landscape is evolving at an unprecedented pace, physicists have taken a huge step towards the development of a quantum internet.

Spearheaded by a team of physicists from Stony Brook University, in collaboration with their peers, this new research revolves around a critical quantum network measurement using quantum memories that function at room temperature.

This achievement marks a significant leap towards establishing a quantum internet testbed.

The concept of a quantum internet represents a revolutionary shift from traditional internet systems. It envisions a network that integrates quantum computers, sensors, and communication devices to manage, process, and transmit quantum states and entanglement.

The quantum internet promises to offer unmatched services and security features, setting a new standard for digital communication and computation.

Quantum information science merges elements of physics, mathematics, and classical computing, leveraging quantum mechanics to address complex problems more efficiently than classical computing methods. It also aims to facilitate secure information transmission.

Despite the growing interest and investment in this field, the realization of a functional quantum internet remains in the conceptual stage.

A primary challenge identified by the Stony Brook research team is the development of quantum repeaters.

These devices are crucial for enhancing communication network security, improving measurement systems accuracy, and boosting the computational power of algorithms for scientific analyses.

Quantum repeaters are designed to maintain quantum information and entanglement across extensive networks, a task that poses one of the most intricate challenges in current physics research.

The researchers have made substantial progress in enhancing quantum repeater technology. They have successfully developed and tested quantum memories that operate efficiently at room temperature, a crucial requirement for constructing large-scale quantum networks.

These quantum memories have been shown to perform identically, a vital characteristic for network scalability.

The team conducted experiments to assess the performance of these memories by employing a standard test known as Hong-Ou-Mandel Interference.

This test verified that the quantum memories could store and retrieve optical qubits without significantly affecting the joint interference process.

This capability is essential for achieving memory-assisted entanglement swapping, a critical protocol for distributing entanglement over long distances and a cornerstone for operational quantum repeaters.

Eden Figueroa, the lead author and a prominent figure in quantum processing research, expressed his enthusiasm about this development.

He stated, We believe this is an extraordinary step toward the development of viable quantum repeaters and the quantum internet.

Figueroa highlighted the significance of their achievement in operating quantum hardware at room temperature, which reduces operational costs and enhances system speed, marking a departure from the traditional, more expensive, and slower methods that require near-absolute zero temperatures.

The innovation extends beyond theoretical implications, as the team has secured U.S. patents for their quantum storage and high-repetition-rate quantum repeater technologies.

This patented technology lays the groundwork for further exploration and testing of quantum networks, setting a precedent for future advancements in the field.

Collaborators Sonali Gera and Chase Wallace, both from Stony Brooks Department of Physics and Astronomy, played key roles in the experimentation process.

Their work demonstrated the quantum memories ability to store photons for a user-defined duration and synchronize the retrieval of these photons, despite their random arrival times. This feature is another critical component for the operational success of quantum repeaters.

Looking ahead, the team is focused on developing sources of entanglement that are compatible with their quantum memories and designing mechanisms to signal the presence of stored photons across multiple quantum memories.

These steps are vital for advancing the quantum internet from a visionary concept to a practical reality, paving the way for a new era of digital communication and computation.

In summary, this mind-bending research represents a monumental stride towards the realization of a quantum internet, setting the stage for a revolution in digital communication and computation.

By successfully developing quantum memories that function at room temperature, the researchers have overcome a significant hurdle in quantum networking and demonstrated the practical deployment of quantum repeaters.

This advancement promises to enhance internet security, increase computational power, and open new frontiers in scientific research, underscoring the teams pivotal role in shaping the future of quantum technology.

As we stand on the brink of this new digital era, the implications of their work extend far beyond the academic sphere, heralding a future where quantum internet could become a reality, transforming our digital landscape in unimaginable ways.

The full study was published in Nature journalQuantum Information

Like what you read? Subscribe to our newsletter for engaging articles, exclusive content, and the latest updates.

Check us out on EarthSnap, a free app brought to you by Eric Ralls and Earth.com.

Read more from the original source:

Functioning quantum internet makes giant stride closer to reality - Earth.com

Read More..

Quantum research sheds light on the mystery of high-temperature superconductivity – Tech Explorist

The exact reason behind high-temperature superconductivity in cuprates, which are a type of material, is still a mystery at the microscopic level. Many scientists think that understanding the pseudogap phase, which is a normal non-superconducting state in these materials, could lead to significant progress in this area. One key question is whether the pseudogap comes from strong pairing fluctuations.

Unitary Fermi gases, in which the pseudogapif it existsnecessarily arises from many-body pairing, offer ideal quantum simulators to address this question.

An international team of scientists has made a breakthrough discovery that could shed light on the microscopic mystery behind high-temperature superconductivity. It could also address global energy challenges.

In a recent study, Associate Professor Hui Hu from Swinburne University of Technology collaborated with researchers at the University of Science and Technology of China (USTC). Together, they conducted experiments that revealed the presence of pseudogap pairing in a strongly interacting cloud of fermionic lithium atoms.

This discovery confirms that multiple particles are pairing up before reaching a critical temperature, leading to remarkable quantum superfluidity. This finding challenges the previous notion that only pairs of particles were involved in this process.

Swinburne University of Technologys Associate Professor Hui Hu said,Quantum superfluidity and superconductivity are the most intriguing phenomenon of quantum physics.

Despite enormous efforts over the last four decades, the origin of high-temperature superconductivity, particularly the appearance of an energy gap in the normal state before superconducting, remains elusive.

The central aim of our work was to emulate a simple text-book model to examine one of the two main interpretations of pseudogap the energy gap without superconducting using a system of ultracold atoms.

In 2010, scientists attempted to investigate pseudogap pairing with ultracold atoms. However, their experiment was unsuccessful. In this new experiment, researchers used advanced methods to prepare homogeneous Fermi clouds and eliminate unwanted interatomic collisions, along with precise control over magnetic fields.

These advancements enabled the observation of a pseudogap without relying on specific microscopic theories to interpret the data. The researchers found a reduction in spectral weight near the Fermi surface in the normal state.

According to researchers,This discovery will undoubtedly have far-reaching implications for the future study of strongly interacting Fermi systems and could lead to potential applications in future quantum technologies.

Journal Reference:

Read more from the original source:

Quantum research sheds light on the mystery of high-temperature superconductivity - Tech Explorist

Read More..

$PORK: Will the Altcoin be Listed on Binance? – CoinGape

PEPE Coin has disappointed the crypto community after its lack of transparency and embezzlement-related issues. A distant cousin, PEPEFORK (PORK), has entered the market on promises of being different. Its a distant cousin because PORK is a fork of the PEPE coin, which has the code of PEPE but came with new features. Within 12 hours of launch, it gained $41 million in swap volume, snatching all the attention. But even with this achievement, will PORK get listed on Binance? Lets have a look into that.

PORK is a pink frog-themed meme coin that was launched recently in the market. It is being traded at $0.00000035 and has gained a market cap of $290 Million within a week of launch.

Exchanges like Uniswap, Gate.io, and others have already listed PORK on their platforms. Pauly0X created the PORK after the communitys harsh treatment of the PEPE team, as they got accused of lack of transparency, mismanagement, rug pulling, etc. Because of this, he introduced PORK to rebuild, redefine community projects, and introduce future utility.

Pauly0x ran multiple marketing campaigns, and with the promise of transparency, this coin reached its perfect audience. There was a moment when PORK took over the Baby Dogecoin in the 9th position of largest meme coin.

Even some influential people, including Matt Furie, have endorsed PORK. Matt Furie is the artist behind OG Pepe, the frog aesthetic.

Despite garnering the affection and interest of the cryptocurrency community, PORK remains unlisted on Binance. Binances approval for a coin matters while predicting the future of a coin.

In 2021, Binance CEO Changpeng Zhao revealed various factors Binance considered before listing a token. Binance is the largest cryptocurrency exchange by volume and has listed 403 tokens by now. They seriously consider the number of users the most necessary criterion during listing. Binance also looks at the number of active addresses on the blockchain, code commits, and the audience of altcoin.

In an interview with Forbes, Chan said,

If a coin has a large number of users, then we will list it. Thats the overwhelming significant attribute. Consider for example, meme coins even though I personally dont get it, if its used by a large number of users we list it. We go by the community, my opinion doesnt matter.

So, if PORK has an adequate number of users and value, it will have a chance to get listed on Binance. At the same time, we need to know that Binance doesnt need to add every token with an audience because their earnings come from volume rather than listings.

PORK is in demand now, but its shortcomings might hinder it from getting listed on Binance. The altcoin has seen the highs and lows too soon of launch. It reached a market cap of $290 Million impressively, but it also fell to $50 Million within a few days. Other than that, around 420.69T tokens are in circulation, which can dilute its value majorly, pushing it toward inflation.

PORK has made a place in the hearts of meme crypto lovers, but as with any other meme coin, it is prone to fall depending on the trends. If it adds more people to its community while maintaining the adequate traded volume, theres a good chance of getting added to the Binance exchange. It is a new meme coin, so it might take some time to get stable and added to Binance. Check out the Upcoming Binance Listing For 2024.

See the original post here:

$PORK: Will the Altcoin be Listed on Binance? - CoinGape

Read More..

Binance Case Nearing Resolution? US Prosecutors Push for Plea Deal in New Move – TradingView

As reported by Bloomberg, U.S. prosecutors are looking to reach a plea agreement in the Binance case initiated by the Department of Justice (DOJ).

U.S. prosecutors asked a federal judge to accept an earlier plea deal in a sentencing letter submitted on Friday in a federal court in Seattle, according to Bloomberg, justifying one of the largest criminal penalties in U.S. history.

According to the U.S. prosecutors, "Given the nature and seriousness of Binances misconduct it was intentional and led by senior executives, with hundreds of millions of dollars of collateral consequences, the penalties in the proposed plea agreement are appropriate."

As part of the plea agreement, Binance would be monitored for up to five years.

Changpeng Zhao, the former CEO of Binance, entered a guilty plea to charges of money laundering and is scheduled to be sentenced in April.

On Nov. 21, Zhao entered a guilty plea to a charge of neglecting to uphold a successful anti-money laundering policy at Binance, the largest cryptocurrency exchange globally, which he created.

To resolve the Department of Justice's (DOJ) investigation into violations of the Bank Secrecy Act (BSA), failing to register as a money-transmitting business, and the International Emergency Economic Powers Act (IEEPA), Binance simultaneously agreed to pay $4.3 billion in fines and restitution.

Binance's guilty plea was part of coordinated resolutions with the U.S. Commodity Futures Trading Commission (CFTC), the Office of Foreign Assets Control (OFAC) and the Department of the Treasury's Financial Crimes Enforcement Network (FinCEN).

See more here:

Binance Case Nearing Resolution? US Prosecutors Push for Plea Deal in New Move - TradingView

Read More..