In a new and exciting interview feature, AZoQuantum discusses the quantum race in Ireland with IDA Ireland Chief Technologist John Durcan. Welook at how research and development is being spurred within the region as well as John's ambitions and predictions for the future.
My name is John Durcan, and in my role as Chief Technologist in the Technology division for IDA Ireland, I work with many of the global technology companies, exploring new opportunities for R&D in Ireland and working to enhance industry and academic collaboration in new areas of research. My own background is in the area of Computer Science, and currently, my four key technology areas of focus are Machine Learning (ML)/Artificial Intelligence (AI), Semiconductors, Quantum computing and Cyber Security.
I am very much passionate about the latest trends in the technology landscape and quantum computing is poised to be one of the biggest trends at the moment, with new tools and developments emerging at pace.
Yes, there has certainly been significant progress in the field of quantum computing in recent years, particularly with hardware and algorithms. For example, in 2019, Google claimed to have achieved Quantum Supremacy by performing a computation that would normally take classical supercomputers thousands of years to complete. This was a major milestone that demonstrated the potential of quantum computers to outperform classical counterparts for specific tasks.
We are also seeing major technology companies and research institutions developing quantum processors with an increasing number of qubits, which is enhancing their capabilities. Late last year, IBM took the record for the largest quantum computing system witha processor that contained 433 qubits, and they announced a roadmap to build an error-corrected quantum computer by 2030.
Additionally, we have also seen advancements when it comes to quantum networks that hold the promise of unhackable communication and distributed quantum computing. In particular, were seeing the progression of quantum communication due to the development of Quantum Key Distribution (QKD) protocols, which will enable the secure transmission of information and programs such as the EuroQCI (European Quantum Communication Infrastructure), which Ireland is involved in.
This gives access to industry and academia for R&D, thus providing great new opportunities for any company looking to access such a resource.
There has recently been a surge in research and development in quantum computing primarily because it offers the potential to solve complex problems that are currently beyond the capabilities of classical computers. This opens a world of new opportunities across all sectors of the industry.
As a result of this potential, we are witnessing breakthroughs in fields such as Cryptography, drug discovery, material science and optimisation. Operating on the principles of quantum mechanics, this technology utilises qubits to execute computations at unprecedented speeds.
Image Credit:solarseven/Shutterstock.com
Nevertheless, the global landscape of quantum computing is continuing to evolve in several countries including Ireland, which is positioning itself to build on the successful tech sector here. For example, in the startup world, we have a company called Equal 1 developing groundbreaking quantum silicon that integrates entire quantum computing systems onto a single chip and on the FDI side, Horizon Quantum Computing opened their first European office in Dublin with the focus on developing the software tools for the world of quantum computing.
Government-funded research groups are vital in the development of quantum computing, particularly in Ireland, which continues to enhance its position in quantum computing research and development. In November 2023, the Irish Government published a national strategy for quantum research.
The report Quantum 2030 A National Quantum Technologies Strategy for Ireland found that nine of the top ten global software companies and three of the top four internet companies have significant operations in Ireland. The report describes Ireland as being ideally situated to capitalise on quantum for industry, noting the potential for quantum technologies in computing, communication, simulation, and sensing.
The country boasts several research institutions, including Trinity College Dublin, which hosts the Centre for Quantum Engineering and Science. Theres also the Trinity Quantum Alliance (TQA) which was launched in 2023. The TQA is a collaboration with Trinity, Microsoft, IBM, Horizon Quantum Computing, Algorithmiq and Moodys Analytics; that brings together experts from research and industry for innovative projects in quantum science and technology, simulation, education, and computation.
The TQA is the catalyst for investment in quantum technology in Ireland with the ultimate goal to construct a vibrant ecosystem to the benefit of various industry sectors and it is already bringing in results. A great example of this involves Trinitys quantum physicists' collaboration with IBM Dublin, who have successfully simulated super diffusion in a system of interacting quantum particles on a quantum computer, which is the first step in doing highly challenging quantum transport calculations on quantum hardware.
Additionally, Ireland's Walton Institute, is also a hub for quantum research and innovation, also plays a pivotal role in the country's quantum leadership as it fosters quantum advancements.
Id say that the fintech sector will experience the most impact. Ireland has an opportunity to build on the deep technical expertise built up over the years. For example, we have Mastercard with their only European Tech Hub based in Ireland, who are partnering with corporate and academic players in Ireland and around the globe to explore quantum computing applications in financial and payment use cases. Fidelity Investments Ireland has built a quantum team in their Fidelity Center for Applied Technology lab in Dublin, a blue skies research lab that looks at future emerging technologies with a 510-year ROI timeframe.
We are starting to see collaborations across sectors such as IBM Research Europe Dublin and Mastercard Ireland working on a quantum subgraph isomorphism algorithm that could distinguish between money laundering schemes and legitimate business enterprises.
The life sciences industry is another sector that will most benefit from quantum. Currently, there is the idea that quantum will be able to help find new chemical compounds. The reason why quantum is wanted for this is because chemical compounds are quite complex when they are being built, and the complexities increase as the compounds grow. It would take months or years for a classical computer to monitor this process, compared to quantum, which should be able to do this in a much shorter period of time. We're starting to see this in drug discovery as well, with most recently seeing AI being used to help source new antibiotics.
The industry is also looking at the opportunities for quantum to help in material sciences, as it could be very relevant to the semiconductor sector. Theres a possibility that quantum can help look at these new materials for engineering, which in turn will help with superconductivity that is related to the high transfer of energy with lower energy loss.
Despite the remarkable advancements, quantum computing faces substantial challenges. Quantum states are delicate and easily disrupted by their environment, which can lead to errors. To help eradicate this, error correction codes and quantum error correction techniques, such as surface codes and topological qubits, are being developed to mitigate the impact of errors and increase the reliability of quantum computations.
Additionally, quantum systems exhibit interference phenomena, where qubits' superpositions interfere destructively or constructively, affecting computation outcomes. However, techniques to control and mitigate interference are currently being explored.
Regional Spotlight: The Quantum Race in Ireland
The development of quantum computing and the maintenance involved is costly, which is why research efforts also include how hardware costs can be reduced and resource allocation optimised. Also, building large-scale, fault-tolerant quantum computers is a significant challenge. To help overcome this challenge, quantum annealing, and trapped ion technologies are being explored to create scalable quantum architectures.
Quantum computing requires a specialised skill set. According to the World Economic Forum, more than half of quantum companies are currently hiring and they struggle to find people with the right skill set. Most current jobs are highly technical, and the only people trained in the field of quantum technologies are highly academic.
Educational programs and partnerships between academia and industry in countries like Ireland are helping to address the shortage of quantum experts. Currently, the IBM fellowship program in Ireland is aiming to achieve PhD status as this level of education is needed due to quantum still being relatively new. Technology Ireland ICT Skillnet, which works with industry to develop skills of the future, has developed two programs:
The most important factor in being able to accelerate the expansion of the current talent base is ensuring that the PhD programs are aimed at encouraging Physics students to move into the world of quantum and showing them that there is an academic path to follow, whilst increasing the number of sponsored PhD quantum research programs which I can see happening over the next couple of years. This should give enough time for degree and masters physics programs to start incorporating quantum.
One of the challenges with getting people to take up quantum computing is to do with the case of classical IT, data, and computer coding which all pay well and are much easier to get into, but it also creates an opportunity here in Ireland. Currently, the Software Development in Ireland industry is valued at 61.4bn and is ranked 2nd in the EU with 33,000+ Software Developers. If one started with just a 1% conversion through targeted programmes, this could give the potential of 300+ Quantum Software engineers to get involved from an early stage and help demonstrate the potential for industry use cases.
Quantum computing holds tremendous promise for solving complex problems and transforming various industries. As the field continues to advance, addressing challenges related to error correction, scalability, and workforce development will be essential.
I would say Ireland has a great opportunity to build on its strengths in technology, Fintech and Life science which are all key areas of interest for Quantum. We can for example, lead opportunities for collaboration across Europe by leveraging growing funding supports out of the EU, such as Horizon Europe and the Quantum Flagship.
When one looks at opportunities for new business, the European Scaleup Institute found Ireland has the highest concentration of High-Growth Firms (HGFs) and hypergrowers (in proportion to overall companies in the country), so perhaps we could see some of these in the world of quantum. It is an exciting time ahead.
More information is available at https://www.idaireland.com/.
John Durcan is Chief Technologist at IDA Ireland, the national investment development agency for Ireland.IDA Ireland partners with companies worldwide to provide financial assistance, on-the-ground support and advice to help them establish and transform their operations in Ireland.Durcans current key focus areas are artificial intelligence (AI), quantum computing, cyber security and the semiconductor sector. Please connect with him at[emailprotected]orwww.idaireland.com.
Disclaimer: The views expressed here are those of the interviewee and do not necessarily represent the views of AZoM.com Limited (T/A) AZoNetwork, the owner and operator of this website. This disclaimer forms part of the Terms and Conditions of use of this website.
Follow this link:
How is Quantum Technology Developing in Ireland? A Conversation with John Durcan, IDA Ireland - AZoQuantum
Read More..