Page 3,925«..1020..3,9243,9253,9263,927..3,9303,940..»

Delta Partners with IBM to Explore Quantum Computing – Database Trends and Applications

Delta Air Lines is embarking on a multi-year collaborative effort with IBM including joining theIBM Q Networkto explore the potential capabilities of quantum computing to transform experiences for customers and employees.

"Partnering with innovative companies like IBM is one way Delta stays on the leading edge of tech to better serve our customers and our people, while drawing the blueprints for application across our industry," saidRahul Samant, Delta's CIO. "We've done this most recently with biometrics in our international terminals and we're excited to explore how quantum computing can be applied to address challenges across the day of travel."

TheIBM Q Network is a global community of Fortune 500 companies, startups, academic institutions and research labs working to advance quantum computing and explore practical applications.

Additionally, through theIBM Q Hub at NC State University, Delta will have access to the IBM Q Network's fleet of universal hardware quantum computersfor commercial use cases and fundamental research, including the recently-announced 53-qubit quantum computer, which, the company says, has the most qubits of a universal quantum computer available for external access in the industry, to date.

"We are very excited by the addition of Delta to our list of collaborators working with us on building practical quantum computing applications," said director of IBM ResearchDario Gil. "IBM's focus, since we put the very first quantum computer on the cloud in 2016, has been to move quantum computing beyond isolated lab experiments conducted by a handful of organizations, into the hands of tens of thousands of users. We believe a clear advantage will be awarded to early adopters in the era of quantum computing and with partners like Delta, we're already making significant progress on that mission."

For more information about the IBM Q Network, go to http://www.ibm.com/quantum-computing/network/overview

Here is the original post:
Delta Partners with IBM to Explore Quantum Computing - Database Trends and Applications

Read More..

Healthcare venture investment in 2020: Quantum computing gets a closer look – Healthcare IT News

Among the healthcare technologies venture firms be looking at most closely at in 2020, various artificial intelligence and machine learning applications are atop this list, of course. But so are more nuts-and-bolts tools like administrative process automation and patient engagement platforms, VCs say.

Other, more leading-edge technologies genomics-focused data and analytics, and even quantum computing are among the areas attracting investor interest this year.

"We expect 2020 to mark the first year where health IT venture firms will start to look at quantum computing technology for upcoming solutions," Dr. Anis Uzzaman, CEO and general partner of Pegasus Tech Ventures, told Healthcare IT News.

"With the breakthrough supremacy announcement from Google validating the technology and the subsequent launch of the service Amazon Braket in 2019, there is sure to be a new wave of entrepreneurial activity starting in 2020."

He said quantum computing technology holds a lot of promise for the healthcare industry with potential breakthroughs possible throughout the health IT stack from operations and administration to security.

Among the promising companies, Uzzaman pointed to Palo Alto-based QC Ware, a startup pioneering a software solution that enables companies to use a variety of quantum hardware platforms such as Rigetti and IBM to solve a variety of enterprise problems, including those specifically related to healthcare.

He also predicted artificial intelligence would continue to be at the forefront for health IT venture firms in 2020 as it becomes more clear which startups may be winners in their initial target sectors.

"There has been consistent growth of investment activity over the past few years into healthcare startups using artificial intelligence to target a range of areas from imaging to diagnostics," he said.

However, Uzzaman also noted regulation and long enterprise sales cycles have largely slowed the ability for these companies to significantly scale their revenues.

"Therefore, we anticipate 2020 will be the year where it will become clearer to health IT venture firms who will be winners in applying artificial intelligence to imaging, pathology, genomics, operations, diagnostics, transcription, and more," he said. "We will also continue to see moderate growth in the overall investment amount in machine learning and AI companies, but will see a notable decrease in the number of companies receiving an investment.

Uzzaman explained there were already some signs in late 2019 that there could be late in a short-term innovation cycle for artificial intelligence with many companies, particularly those applying machine learning and AI to robotics, shutting down.

"However, we anticipate many companies will reach greater scale with their solutions and separate themselves from the competition, which will translate into more mega funding rounds," he said.

Ezra Mehlman, managing partner with Health Enterprise Partners, explained that at the beginning of each year, the firm conducts a market mapping exercise to determine which healthcare IT categories are rising to the top of the prioritization queue of its network of hospital and health plan limited partners.

"In the past year, we have seen budgets meaningfully open for automation solutions in administrative processing, genomics-focused data and analytics offerings, aging-in-place technologies and, in particular, patient engagement platforms rooted in proven clinical use cases," he said. "We are actively looking at all of these spaces."

He pointed out that in 2018, more than $2 billion was invested into artificial intelligence and machine learning healthcare IT companies, which represented a quarter of the total dollars invested into digital health companies that year.

"We view this as a recognition of two things: the meteoric aspirations that the market has assigned to AI and machine learning's potential, and a general sense that the underlying healthcare data infrastructure has reached the point of maturity, where it is possible to realize ROI from AI/machine learning initiatives," he said.

However, he said Health Enterprise Partners is still waiting for the "breakout" to occur in adoption.

"We believe we have now reached the point where category leaders will emerge in each major healthcare AI subsector and the usage will become more widespread we have made one such investment in the clinical AI space in the last year," Mehlman said.

Heading into 2020, Mehlman said companies that cannot deliver high-six-figure, year-one ROI in the form of increased revenue or reduced cost will struggle, and companies that cannot crisply answer the question, "Who is the buyer and what is the budget?" will be challenged.

"If one applies these tests to some of the areas that have attracted the most healthcare VC investment--social determinants of health, blockchain and digital therapeutics to name a few the number of viable companies sharply drops off," he said.

Mehlman noted that while these sound like simple principles, the current environment of rapidly consolidating, budget-constrained hospitals, vertically integrating health plans, and big tech companies making inroads into healthcare has raised the bar on what is required for a healthcare startup to gain meaningful market traction.

Continued here:
Healthcare venture investment in 2020: Quantum computing gets a closer look - Healthcare IT News

Read More..

ASC20 Finals to be Held in Shenzhen, Tasks Include Quantum Computing Simulation and AI Language Exam – HPCwire

BEIJING, Jan. 21, 2020 The 2020 ASC Student Supercomputer Challenge (ASC20) announced the tasks for the new season: using supercomputers to simulate Quantum circuit and training AI models to take English test. These tasks can be unprecedented challenges for the 300+ ASC teams from around the world. From April 25 to 29, 2020, top 20 finalists will fiercely compete at SUSTech in Shenzhen, China.

ASC20 set up Quantum Computing tasks for the first time. Teams are going to use the QuEST (Quantum Exact Simulation Toolkit) running on supercomputers to simulate 30 qubits in two cases: quantum random circuits (random.c), and quantum fast Fourier transform circuits (GHZ_QFT.c). Quantum computing is a disruptive technology, considered to be the next generation high performance computing. However the R&D of quantum computers is lagging behind due to the unique properties of quantum. It adds extra difficulties for scientists to use real quantum computers to solve some of the most pressing problems such as particle physics modeling, cryptography, genetic engineering, and quantum machine learning. From this perspective, the quantum computing task presented in the ASC20 challenge, hopefully, will inspire new algorithms and architectures in this field.

The other task revealed is Language Exam Challenge. Teams will take on the challenge to train AI models on an English Cloze Test dataset, vying to achieve the highest test scores. The dataset covers multiple levels of English language tests in China, including the college entrance examination, College English Test Band 4 and Band 6, and others. Teaching the machines to understand human language is one of the most elusive and long-standing challenges in the field of AI. The ASC20 AI task signifies such a challenge, by using human-oriented problems to evaluate the performance of neural networks.

Wang Endong, ASC Challenge initiator, member of the Chinese Academy of Engineering and Chief Scientist at Inspur Group, said that through these tasks, students from all over the world get to access and learn the most cutting-edge computing technologies. ASC strives to foster supercomputing & AI talents of global vision, inspiring technical innovation.

Dr. Lu Chun, Vice President of SUSTech host of the ASC20 Finals, commented that supercomputers are important infrastructure for scientific innovation and economic development. SUSTech makes focused efforts on developing supercomputing and hosting ASC20, hoping to drive the training of supercomputing talent, international exchange and cooperation, as well as inter discipline development at SUSTech.

Furthermore, during January 15-16, 2020, the ASC20 organizing committee held a competition training camp in Beijing to help student teams prepare for the ongoing competition. HPC and AI experts from the State Key Laboratory of High-end Server and Storage Technology, Inspur, Intel, NVIDIA, Mellanox, Peng Cheng Laboratory and the Institute of Acoustics of the Chinese Academy of Sciences gathered to provide on-site coaching and guidance. Previous ASC winning teams also shared their successful experiences.

About ASC

The ASC Student Supercomputer Challenge is the worlds largest student supercomputer competition, sponsored and organized by Asia Supercomputer Community in China and supported by Asian, European, and American experts and institutions. The main objectives of ASC are to encourage exchange and training of young supercomputing talent from different countries, improve supercomputing applications and R&D capacity, boost the development of supercomputing, and promote technical and industrial innovation. The annual ASC Supercomputer Challenge was first held in 2012 and has since attracted over 8,500 undergraduates from all over the world. Learn more ASC athttps://www.asc-events.org/.

Source: ASC

The rest is here:
ASC20 Finals to be Held in Shenzhen, Tasks Include Quantum Computing Simulation and AI Language Exam - HPCwire

Read More..

New Centers Lead the Way towards a Quantum Future – Energy.gov

The world of quantum is the world of the very, very small. At sizes near those of atoms and smaller, the rules of physics start morphing into something unrecognizableat least to us in the regular world. While quantum physics seems bizarre, it offers huge opportunities.

Quantum physics may hold the key to vast technological improvements in computing, sensing, and communication. Quantum computing may be able to solve problems in minutes that would take lifetimes on todays computers. Quantum sensors could act as extremely high-powered antennas for the military. Quantum communication systems could be nearly unhackable. But we dont have the knowledge or capacity to take advantage of these benefitsyet.

The Department of Energy (DOE) recently announced that it will establish Quantum Information Science Centers to help lay the foundation for these technologies. As Congress put forth in the National Quantum Initiative Act, the DOEs Office of Science will make awards for at least two and up to five centers.

These centers will draw on both quantum physics and information theory to give us a soup-to-nuts understanding of quantum systems. Teams of researchers from universities, DOE national laboratories, and private companies will run them. Their expertise in quantum theory, technology development, and engineering will help each center undertake major, cross-cutting challenges. The centers work will range from discovery research up to developing prototypes. Theyll also address a number of different technical areas. Each center must tackle at least two of these subjects: quantum communication, quantum computing and emulation, quantum devices and sensors, materials and chemistry for quantum systems, and quantum foundries for synthesis, fabrication, and integration.

The impacts wont stop at the centers themselves. Each center will have a plan in place to transfer technologies to industry or other research partners. Theyll also work to leverage DOEs existing facilities and collaborate with non-DOE projects.

As the nations largest supporter of basic research in the physical sciences, the Office of Science is thrilled to head this initiative. Although quantum physics depends on the behavior of very small things, the Quantum Information Science Centers will be a very big deal.

The Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, please visit https://www.energy.gov/science.

More here:
New Centers Lead the Way towards a Quantum Future - Energy.gov

Read More..

Toshiba says it created an algorithm that beats quantum computers using standard hardware – TechSpot

Something to look forward to: Some of the biggest problems that need solving in the enterprise world require sifting through vast amounts of data and finding the best possible solution given a number of factors and requirements, some of which are at times unknown. For years, quantum computing has been touted as the most promising jump in computational speed for certain kind of problems, but Toshiba says revisiting classical algorithms helped it develop a new one that can leverage existing silicon-based hardware to get a faster result.

Toshiba's announcement this week claims a new algorithm it's been perfecting for years is capable of analyzing market data much more quickly and efficiently than those used in some of the world's fastest supercomputers.

The algorithm is called the "Simulated Bifurcation Algorithm," and is supposedly good enough to be used in finding accurate approximate solutions for large-scale combinatorial optimization problems. In simpler terms, it can come up with a solution out of many possible ones for a particularly complex problem.

According to its inventor, Hayato Goto, it draws inspiration from the way quantum computers can efficiently comb through many possibilities. Work on SBA started in 2015, and Goto noticed that adding new inputs to a complex system with 100,000 variables makes it easy to solve it in a matter of seconds with a relatively small computational cost.

This essentially means that Toshiba's new algorithm could be used on standard desktop computers. To give you an idea how important this development is, Toshiba demonstrated last year that SBA can get highly accurate solutions for an optimization problem with 2,000 connected variables in 50 microseconds, or 10 times faster than laser-based quantum computers.

SBA is also highly scalable, meaning it can be made to work on clusters of CPUs or FPGAs, all thanks to the contributions of Kosuke Tatsumura, another one of Toshiba's senior researchers that specializes in semiconductors.

Companies like Microsoft, Google, IBM, and many others are racing to be the first with a truly viable quantum commercial system, but so far their approaches have produced limited results that live inside their labs.

Meanwhile, scientists like Goto and Kosuke are going back to the roots by exploring ways to improve on classical algorithms. Toshiba hopes to use SBA to optimize financial operations like currency trading and rapid-fire portfolio adjustments, but this could very well be used to calculate efficient routes for delivery services and molecular precision drug development.

Read more here:
Toshiba says it created an algorithm that beats quantum computers using standard hardware - TechSpot

Read More..

Quantum networking projected to be $5.5 billion market in 2025 – TechRepublic

Several companies are working to advance the technology, according to a new report.

The market for quantum networking is projected to reach $5.5 billion by 2025, according to a new report from Inside Quantum Technology (IQT).

While all computing systems rely on the ability to store and manipulate information in individual bits, quantum computers "leverage quantum mechanical phenomena to manipulate information" and to do so requires the use of quantum bits, or qubits, according to IBM.

SEE:Quantum computing: An insider's guide (TechRepublic)

Quantum computing is seen as the panacea for solving the problems computers are not equipped to handle now.

"For problems above a certain size and complexity, we don't have enough computational power on earth to tackle them,'' IBM said. This requires a new kind of computing, and this is where quantum comes in.

IQT says that quantum networking revenue comes primarily from quantum key distribution (QK), quantum cloud computing, and quantum sensor networks. Eventually, these strands will merge into a Quantum Internet, the report said.

Cloud access to quantum computers is core to the business models of many leading quantum computer companiessuch as IBM, Microsoft and Rigettias well as several leading academic institutions, according to the report.

Microsoft, for instance, designed a special programming language for quantum computers, called Q#, and released a Quantum Development Kit to help programmers create new applications, according to CBInsights.

One of Google's quantum computing projects involves working with NASA to apply the tech's optimization abilities to space travel.

The Quantum Internet network will have the same "geographical breadth of coverage as today's internet," the IQT report stated.

It will provide a powerful platform for communications among quantum computers and other quantum devices, the report said.

And will enable a quantum version of the Internet of Things. "Finally, quantum networks can be the most secure networks ever built completely invulnerable if constructed properly," the report said.

The report, "Quantum Networks: A Ten-Year Forecast and Opportunity Analysis," forecasts demand for quantum network equipment, software and services in both volume and value terms.

"The time has come when the rapidly developing quantum technology industry needs to quantify the opportunities coming out of quantum networking," said Lawrence Gasman, president of Inside Quantum Technology, in a statement.

Quantum Key Distribution (QKD) adds unbreakable coding of key distribution to public key encryption, making it virtually invulnerable, according to the report.

QKD is the first significant revenue source to come from the emerging Quantum Internet and will create almost $150 million in revenue in 2020, the report said.

QKD's early success is due to potential usersbig financial and government organizationshave an immediate need for 100% secure encryption, the IQT report stated.

By 2025, IQT projects that revenue from "quantum clouds" are expected to exceed $2 billion.

Although some large research and government organizations are buying quantum computers for on-premise use, the high cost of the machines coupled with the immaturity of the technology means that the majority of quantum users are accessing quantum through clouds, the report explained.

Quantum sensor networks promise enhanced navigation and positioning and more sensitive medical imaging modalities, among other use cases, the report said.

"This is a very diverse area in terms of both the range of applications and the maturity of the technology."

However, by 2025 revenue from quantum sensors is expected to reach about $1.2 billion.

We deliver the top business tech news stories about the companies, the people, and the products revolutionizing the planet. Delivered Daily

Image: Getty Images/iStockphoto

See original here:
Quantum networking projected to be $5.5 billion market in 2025 - TechRepublic

Read More..

University of Sheffield launches Quantum centre to develop the technologies of tomorrow – Quantaneo, the Quantum Computing Source

A new research centre with the potential to revolutionise computing, communication, sensing and imaging technologies is set to be launched by the University of Sheffield this week (22 January 2020).

The Sheffield Quantum Centre, which will be officially opened by Lord Jim ONeill, Chair of Chatham House and University of Sheffield alumnus, is bringing together more than 70 of the Universitys leading scientists and engineers to develop new quantum technologies.

Quantum technologies are a broad range of new materials, devices and information technology protocols in physics and engineering. They promise unprecedented capabilities and performance by exploiting phenomena that cannot be explained by classical physics.

Quantum technologies could lead to the development of more secure communications technologies and computers that can solve problems far beyond the capabilities of existing computers.

Research into quantum technologies is a high priority for the UK and many countries around the world. The UK government has invested heavily in quantum research as part of a national programme and has committed 1 billion in funding over 10 years.

Led by the Universitys Department of Physics and Astronomy, Department of Electronic and Electrical Engineering and Department of Computer Science, the Sheffield Quantum Centre will join a group of northern universities that are playing a significant role in the development of quantum technologies.

The University of Sheffield has a strong presence in quantum research with world leading capabilities in crystal growth, nanometre scale device fabrication and device physics research. A spin-out company has already been formed to help commercialise research, with another in preparation.

Professor Maurice Skolnick, Director of the Sheffield Quantum Centre, said: The University of Sheffield already has very considerable strengths in the highly topical area of quantum science and technology. I have strong expectation that the newly formed centre will bring together these diverse strengths to maximise their impact, both internally and more widely across UK universities and funding bodies.

During the opening ceremony, the Sheffield Quantum Centre will also launch its new 2.1 million Quantum Technology Capital equipment.

Funded by the Engineering and Physical Sciences Research Council (EPSRC), the equipment is a molecular beam epitaxy cluster tool designed to grow very high quality wafers of semiconductor materials types of materials that have numerous everyday applications such as in mobile phones and lasers that drive the internet.

The semiconductor materials also have many new quantum applications which researchers are focusing on developing.

Professor Jon Heffernan from the Universitys Department of Electronic and Electrical Engineering, added: The University of Sheffield has a 40-year history of pioneering developments in semiconductor science and technology and is host to the National Epitaxy Facility. With the addition of this new quantum technologies equipment I am confident our new research centre will lead to many new and exciting technological opportunities that can exploit the strange but powerful concepts from quantum science.

Continue reading here:
University of Sheffield launches Quantum centre to develop the technologies of tomorrow - Quantaneo, the Quantum Computing Source

Read More..

5 Emerging Technologies That Will Shape this Decade – San Diego Entertainer Magazine

UncategorizedByJohn Breaux|January 22, 2020

Some say that we are in the midst of a new technological revolution, with emerging technologies taking shape to transform the world we live in. As we step into a new decade, expect to see a handful of amazing advancements in technology that will dramatically shape our society at large.

Weve been told for years that self-driving cars are the future, but this decade will bring us the greatest advancements in this field as of yet. Companies have been researching and testing autonomous fleets of cars for years now, and some are finally gearing up to deploy them in the real world. Tesla has already released a self-driving feature in its popular electric vehicles, while Google-owned Waymo has completed a trial of autonomous taxi systems in California where it successfully transported more than 6000 people.

This radically powerful form of computing will continue to reach more practical applications throughout the decade. Quantum computers are capable of performing exponentially more powerful calculations when compared to traditional computing, but the size and power required to run them makes them difficult to use in a more practical sense. Further research in quantum, computing will allow greater application for solving real-world problems.

Augmenting our bodies with technology will become more common as wearable devices will allow us to improve everything from hearing to sight. Examples include devices and implants that will be able to enhance sensory capabilities, improve health, and contribute to a heightened quality of life and functional performance.

The advent of 5G will perhaps be one of the most impactful technologies for the many starting this year and proceeding onwards. 5G networks will have the capability of connecting us to the digital world in ways weve never had before, affording us blazing fast speeds of nearly 10 Gb/s. The speed of 5G will allow for seamless control of vast autonomous car fleets, precise robotic surgery, or streaming of 4K video with no buffering.

Drones are already a pivotal piece of technology in areas including transportation, surveillance, and logistics. Swarm robotics will be a new multi-robot system inspired by nature that will have major potential in completing tasks with unparalleled efficiency. Applications could include providing post-disaster relief, geological surveying, and even farming. Swarm robotics will be able to accomplish tasks through cooperative behavior while adapting to situations in ways that would not be possible with a single drone.

Link:
5 Emerging Technologies That Will Shape this Decade - San Diego Entertainer Magazine

Read More..

Apple Wanted the iPhone to Have End-to-End Encryption. Then the FBI Stepped In – Popular Mechanics

Apple had intended to make end-to-end encryption of an entire device's data, which would then be uploaded to iCloud, available to customers. But then the FBI stepped in and put the kibosh on those plans.

The problem, according to law enforcement: Fully locked-down iPhones could be a roadblock to investigations, like the probe into a Saudi Air Force officer who shot three people dead at a Pensacola, Florida naval base last month.

U.S. Attorney General William Barr publicly asked Apple to unlock the two iPhones the shooter had in his possession. The company eventually did hand over backups from his iCloud account, but the whole ordeal shone a light on the back-and-forth dialogue going on between the U.S. government and tech companies that disagree about whether or not end-to-end encryption should be allowed. Just last month, both Democratic and Republican senators considered legislation to ban end-to-end encryption, using unrecoverable evidence in crimes against children as an example.

Apple had been planning to introduce end-to-end encryption for over two years and even told the FBI, according to a Reuters report that cited one current and three former Bureau officials, as well as one current and one former Apple employee. Shortly thereafter, the FBIs cybercrime agents and its operational technology division came out as staunchly opposed to those plans because it would make it impossible for Apple to recover people's messages for use in investigations.

"Legal killed it, for reasons you can imagine," another former Apple employee told Reuters. "They decided they werent going to poke the bear anymore."

In this case, the bear is the government. In 2016, a nearly identical showdown between the FBI and Apple took place after the two parties got into a legal battle over access to an iPhone owned by a suspect in the San Bernardino, California mass shooting.

The nixed encryption plans are a loss for iPhone users because end-to-end encryption is more advanced than today's industry standard for security: basic encryption. Loads of companies use encryption, which basically scrambles the contents of a message or some other snippet of data, rendering it completely useless without the decryption key, which can unshuffle the jargon and restore the original.

Under this framework, a company usually has the cryptographic encryption key, which means the data isn't truly safe if a government or hacker gets their hands on the key. End-to-end encryption, though, means only the, well, end computerthe one receiving the datahas the encryption key stored. In theory, that person's computer could still be hacked and the encryption key could be forfeited, but it really reduces those odds.

But that limitation on who has access to the encryption key is the very crux of law enforcement's issue with end-to-end encryption: If Apple doesn't have the encryption key to access backups of a person's iPhone on the cloud, then the government can't access that data either.

Still, it's not entirely clear that the government is to blame for this project being killed. It's entirely possible Apple didn't want to have to deal with the headache of its customers accidentally locking themselves out of their own data.

For the rest of the world's smartphone users who rely on the Android operating system, end-to-end encryption is an option. Back in October 2018, Google announced that customers could use a new capability that would keep backed-up data from their phones completely locked down by using a decryption key that's randomly generated on that user's phone, using their lock screen pin, pattern, or passcode.

"By design, this means that no one (including Google) can access a user's backed-up application data without specifically knowing their passcode," the company wrote in a blog post. This end-to-end encryption offering is still available.

Read more here:
Apple Wanted the iPhone to Have End-to-End Encryption. Then the FBI Stepped In - Popular Mechanics

Read More..

The FBI doesn’t need Apple to give it a backdoor to encryption, because it already has all the access it needs – Boing Boing

Once again, the FBI is putting pressure on Apple to help them break into the phone of a mass shooter. And once again, Apple has been largely resistant to the effort. Which is good, because a government having control over a private company that gives them secret backdoor access into people's personal technology devices is an authoritarian wet dream waiting to happen.

It also doesn't matter anyway because as Reuters pointed out this week Apple already buckled under FBI pressure a few years and cancelled their plans to add end-to-end encryption to all iPhone backups in iCloud:

The company said it turned over at least some data for 90% of the requests it received [from the FBI]. It turns over data more often in response to secret U.S. intelligence court directives, which sought content from more than 18,000 accounts in the first half of 2019, the most recently reported six-month period.

But what if the FBI wants access to someone's locked iPhone, and they haven't backed it up to iCloud? Theystill don't need Apple's help, because as with the San Bernardino shooting there are plenty of third-party companies that can and will gladly solve the problem in exchange for money.

From OneZero:

Over the past three months,OneZero sent Freedom of Information Act (FOIA) requests to over 50 major police departments, sheriffs, and prosecutors around the country asking for information about their use of phone-cracking technology. Hundreds of documents from these agencies reveal that law enforcement in at least 11 states spent over $4 million in the last decade on devices and software designed to get around passwords and access information stored on phones.

[]

The documents range from contracts, requests for proposals (RFPs), invoices for payments by law enforcement, quotes from forensic companies, and emails traded between officials discussing vendor approval. They suggest that most law enforcement agencies bought forensic investigation products from a small group of companies that includeCellebrite, Grayshift, Paraben, BlackBag, and MSAB. In addition to selling the software and hardware needed to unlock phones, these companies also charge thousands of dollars each year to upgrade the software in their products. In addition, their customers spend thousands on training sessions to teach personnel in their offices how to use the tools.

And perhaps that's the most frustrating thing about this whole scenario. The US government is always warning us about the authoritarian overreaches of surveillance states like those in China, but really, they just want to replicate it without feeling guilty. Meanwhile, supposed-innovations of free market enterprise are providing the same opportunities for authoritarian surveillance capitalism, but, ya know, privately-owned, so immune to any legal oversight or transparency, because America. Isn't that supposed to be the dream?

Exclusive: Apple dropped plan for encrypting backups after FBI complained [Joseph Menn / Reuters]

Exclusive: U.S. Cops Have Wide Access to Phone Cracking Software, New Documents Reveal [Michael Hayes / OneZero]

Image via the White House

No encrypted iCloud backups for you, citizen!

The time is always right to do what is right, thats true. But the timing of this is a pretty ugly retconespecially after a new trove of FBI files on Martin Luther King, Jr. were just released six months ago, painting an ugly picture of frequent sexual misconduct.

Gee, thanks.

Thanks to a series of progressive movements throughout the United States, more and more states are allowing people to smoke in the great outdoors with absolute freedom. Unfortunately, most pipe-makers have been slow to catch up with this new reality, which leads to avid smokers stuffing a cumbersome glass pipe in their pocket every time []

Its no secret that when it comes to building your brand online, nothing beats having a powerful and streamlined website. BoxHosting Website Hosting makes it easy to create an extensive online presence with room for 500 domains, 500 10GB email accounts, and unlimited desk spaceand you only have to pay $45 for life. In addition []

Theres never been a better time to work as a web developerregardless of whether youre looking to work with a big company or as a solo freelancer. The Essential PHP Coding Bundle will get you up to speed with one of the worlds most popular and powerful web development scripting languages, and its currently available []

Here is the original post:
The FBI doesn't need Apple to give it a backdoor to encryption, because it already has all the access it needs - Boing Boing

Read More..