Egaa-Ugrinovic, G., Sanz-Cortes, M., Figueras, F., Bargall, N. & Gratacs, E. Differences in cortical development assessed by fetal MRI in late-onset intrauterine growth restriction. Am. J. Obstet. Gynecol. 209(126), e1-8 (2013).
Google Scholar
Rodrguez-Lpez, M. et al. Descriptive analysis of different phenotypes of cardiac remodeling in fetal growth restriction. Ultrasound Obstet. Gynecol. Off. J. Int. Soc. Ultrasound Obstet. Gynecol. 50, 207214 (2017).
Crispi, F. et al. Fetal growth restriction results in remodeled and less efficient hearts in children. Circulation 121, 24272436 (2010).
Article PubMed Google Scholar
Eixarch, E. et al. Neurodevelopmental outcome in 2-year-old infants who were small-for-gestational age term fetuses with cerebral blood flow redistribution. Ultrasound Obstet. Gynecol. 32, 894899 (2008).
Article CAS PubMed Google Scholar
Maritz, G. S., Cock, M. L., Louey, S., Suzuki, K. & Harding, R. Fetal growth restriction has long-term effects on postnatal lung structure in sheep. Pediatr. Res. 55, 287295 (2004).
Article PubMed Google Scholar
Simpson, S. J. et al. Altered lung structure and function in mid-childhood survivors of very preterm birth. Thorax 72, 702711 (2017).
Article PubMed Google Scholar
Ronkainen, E., Dunder, T., Kaukola, T., Marttila, R. & Hallman, M. Intrauterine growth restriction predicts lower lung function at school age in children born very preterm. Arch. Dis. Child. Fetal Neonatal Ed. 101, F412-417 (2016).
Article PubMed Google Scholar
Tandra, M. et al. Small for gestational age is associated with reduced lung function in middle age: A prospective study from first to fifth decade of life. Respirology 28, 159165 (2023).
Article PubMed Google Scholar
Groenenberg, I. A., Wladimiroff, J. W. & Hop, W. C. Fetal cardiac and peripheral arterial flow velocity waveforms in intrauterine growth retardation. Circulation 80, 17111717 (1989).
Article CAS PubMed Google Scholar
Groenenberg, I. A. L., Stijnen, T. & Wladimiroff, J. W. Blood flow velocity waveforms in the fetal cardiac outflow tract as a measure of fetal well-being in intrauterine growth retardation. Pediatr. Res. 27, 379382 (1990).
Article CAS PubMed Google Scholar
Rasanen, J. et al. Reactivity of the human fetal pulmonary circulation to maternal hyperoxygenation increases during the second half of pregnancy: A randomized study. Circulation 97, 257262 (1998).
Article CAS PubMed Google Scholar
Done, E. et al. Maternal hyperoxygenation test in fetuses undergoing FETO for severe isolated congenital diaphragmatic hernia. Ultrasound Obstet. Gynecol. Off. J. Int. Soc. Ultrasound Obstet. Gynecol. 37, 264271 (2011).
Cikes, M. et al. Machine learning-based phenogrouping in heart failure to identify responders to cardiac resynchronization therapy: Machine learning-based approach to patient selection for CRT. Eur. J. Heart Fail. 21, 7485 (2019).
Article PubMed Google Scholar
Garcia-Canadilla, P., Sanchez-Martinez, S., Crispi, F. & Bijnens, B. Machine learning in fetal cardiology: What to expect. Fetal Diagn. Ther. 47, 363372 (2020).
Article PubMed Google Scholar
Garcia-Canadilla, P. et al. Machine-learningbased exploration to identify remodeling patterns associated with death or heart-transplant in pediatric-dilated cardiomyopathy. J. Heart Lung Transplant. 41, 516526 (2022).
Article PubMed Google Scholar
Garcia-Canadilla, P. et al. A computational model of the fetal circulation to quantify blood redistribution in intrauterine growth restriction. PLoS Comput. Biol. 10, e1003667 (2014).
Article PubMed PubMed Central Google Scholar
Garcia-Canadilla, P. et al. Understanding the aortic isthmus doppler profile and its changes with gestational age using a lumped model of the fetal circulation. Fetal Diagn. Ther. 41, 4150 (2017).
Article PubMed Google Scholar
Figueras, F. & Gratacs, E. Update on the diagnosis and classification of fetal growth restriction and proposal of a stage-based management protocol. Fetal Diagn. Ther. 36, 8698 (2014).
Article PubMed Google Scholar
Hadlock, F. P., Harrist, R. B., Sharman, R. S., Deter, R. L. & Park, S. K. Estimation of fetal weight with the use of head, body, and femur measurementsA prospective study. Am. J. Obstet. Gynecol. 151, 333337 (1985).
Article CAS PubMed Google Scholar
Figueras, F. et al. Customized birthweight standards for a Spanish population. Eur. J. Obstet. Gynecol. Reprod. Biol. 136, 2024 (2008).
Article CAS PubMed Google Scholar
Salomon, L. J. et al. ISUOG Practice Guidelines: Ultrasound assessment of fetal biometry and growth. Ultrasound Obstet. Gynecol. 53, 715723 (2019).
Article CAS PubMed Google Scholar
Bhide, A. et al. isuog Practice Guidelines (updated): use of Doppler velocimetry in obstetrics. Ultrasound Obstet. Gynecol. 58, 331339 (2021).
Article CAS PubMed Google Scholar
Peralta, C. F. A., Cavoretto, P., Csapo, B., Vandecruys, H. & Nicolaides, K. H. Assessment of lung area in normal fetuses at 1232 weeks: Lung area and LHR reference intervals. Ultrasound Obstet. Gynecol. 26, 718724 (2005).
Article CAS PubMed Google Scholar
Palacio, M. et al. Prediction of neonatal respiratory morbidity by quantitative ultrasound lung texture analysis: A multicenter study. Am. J. Obstet. Gynecol. 217(196), e1-196.e14 (2017).
Google Scholar
Azpurua, H. et al. Acceleration/ejection time ratio in the fetal pulmonary artery predicts fetal lung maturity. Am. J. Obstet. Gynecol. 203(40), e1-40.e8 (2010).
Google Scholar
Moreno-Alvarez, O. et al. Association between intrapulmonary arterial Doppler parameters and degree of lung growth as measured by lung-to-head ratio in fetuses with congenital diaphragmatic hernia. Ultrasound Obstet. Gynecol. 31, 164170 (2008).
Article CAS PubMed Google Scholar
Laudy, J. A., De Ridder, M. A. & Wladimiroff, J. W. Doppler velocimetry in branch pulmonary arteries of normal human fetuses during the second half of gestation. Pediatr. Res. 41, 897901 (1997).
Article CAS PubMed Google Scholar
Turk, E. A. et al. Spatiotemporal alignment of in utero BOLD-MRI series: Spatiotemporal alignment of MRI series. J. Magn. Reson. Imaging 46, 403412 (2017).
Article PubMed PubMed Central Google Scholar
Lin, Y.-Y., Liu, T.-L. & Fuh, C.-S. Multiple kernel learning for dimensionality reduction. IEEE Trans. Pattern Anal. Mach. Intell. 33, 11471160 (2011).
Article PubMed Google Scholar
Sanchez-Martinez, S. et al. Characterization of myocardial motion patterns by unsupervised multiple kernel learning. Med. Image Anal. 35, 7082 (2017).
Article PubMed Google Scholar
Garcia-Canadilla, P. et al. Patient-specific estimates of vascular and placental properties in growth-restricted fetuses based on a model of the fetal circulation. Placenta 36, 981989 (2015).
Article PubMed Google Scholar
Pennati, G., Bellotti, M. & Fumero, R. Mathematical modelling of the human foetal cardiovascular system based on Doppler ultrasound data. Med. Eng. Phys. 19, 327335 (1997).
Article CAS PubMed Google Scholar
Cynober, E. et al. Fetal pulmonary artery doppler waveform: A preliminary report. Fetal Diagn. Ther. 12, 226231 (1997).
Article CAS PubMed Google Scholar
Khatib, N. et al. The effect of maternal hyperoxygenation on fetal circulatory system in normal growth and IUGR fetuses. What we can learn from this impact. J. Matern. Fetal. Neonatal. Med. 31, 914918 (2018).
Guan, Y. et al. The role of doppler waveforms in the fetal main pulmonary artery in the prediction of neonatal respiratory distress syndrome: Doppler Waveforms Predict Neonatal RDS. J. Clin. Ultrasound 43, 375383 (2015).
Article PubMed Google Scholar
Rizzo, G. et al. Blood flow velocity waveforms from peripheral pulmonary arteries in normally grown and growth-retarded fetuses: Doppler and fetal pulmonary circulation. Ultrasound Obstet. Gynecol. 8, 8792 (1996).
Article CAS PubMed Google Scholar
Cruz-Martinez, R. et al. Contribution of intrapulmonary artery Doppler to improve prediction of survival in fetuses with congenital diaphragmatic hernia treated with fetal endoscopic tracheal occlusion. Ultrasound Obstet. Gynecol. 35, 572577 (2010).
Article CAS PubMed Google Scholar
Basurto, D. et al. Intrapulmonary artery Doppler to predict mortality and morbidity in fetuses with mild or moderate left-sided congenital diaphragmatic hernia. Ultrasound Obstet. Gynecol. 58, 590596 (2021).
Article CAS PubMed Google Scholar
Bravo-Valenzuela, N. J. M. et al. Dynamics of pulmonary venous flow in fetuses with intrauterine growth restriction: Pulmonary venous flow in IUGR fetuses. Prenat. Diagn. 35, 249253 (2015).
Article PubMed Google Scholar
DeKoninck, P. et al. Sonographic evaluation of vascular pulmonary reactivity following oxygen administration in fetuses with normal lung development: Fetal pulmonary reactivity to oxygen in fetuses with normal lung development. Prenat. Diagn. 32, 13001304 (2012).
Article CAS PubMed Google Scholar
Broth, R. E. et al. Prenatal prediction of lethal pulmonary hypoplasia: The hyperoxygenation test for pulmonary artery reactivity. Am. J. Obstet. Gynecol. 187, 940945 (2002).
Article PubMed Google Scholar
Sylvester, J. T., Shimoda, L. A., Aaronson, P. I. & Ward, J. P. T. hypoxic pulmonary vasoconstriction. Physiol. Rev. 92, 367520 (2012).
Article CAS PubMed Google Scholar
Torrance, H. L., Mulder, E. J. H., Brouwers, H. A. A., van Bel, F. & Visser, G. H. A. Respiratory outcome in preterm small for gestational age fetuses with or without abnormal umbilical artery Doppler and/or maternal hypertension. J. Matern. Fetal Neonatal Med. 20, 613621 (2007).
Article PubMed Google Scholar
Lio, A. et al. Fetal Doppler velocimetry and bronchopulmonary dysplasia risk among growth-restricted preterm infants: An observational study. BMJ Open 7, e015232 (2017).
Article PubMed PubMed Central Google Scholar
Baumann, S., Godtfredsen, N. S., Lange, P. & Pisinger, C. The impact of birth weight on the level of lung function and lung function decline in the general adult population. The Inter99 study. Respir. Med. 109, 12931299 (2015).
den Dekker, H. T. et al. Early growth characteristics and the risk of reduced lung function and asthma: A meta-analysis of 25,000 children. J. Allergy Clin. Immunol. 137, 10261035 (2016).
Article Google Scholar
Lange, P. et al. Lung-function trajectories leading to chronic obstructive pulmonary disease. N. Engl. J. Med. 373, 111122 (2015).
Article CAS PubMed Google Scholar
Breyer-Kohansal, R. et al. Factors associated with low lung function in different age bins in the general population. Am. J. Respir. Crit. Care Med. 202, 292296 (2020).
Article PubMed Google Scholar
Vellv, K. et al. Lung function in young adults born small for gestational age at term. Respirology 14361. https://doi.org/10.1111/resp.14361 (2022).
Crispi, F. et al. Exercise capacity in young adults born small for gestational age. JAMA Cardiol. https://doi.org/10.1001/jamacardio.2021.2537 (2021).
Article PubMed PubMed Central Google Scholar
Olvera, N. et al. Circulating biomarkers in young individuals with low peak FEV 1. Am. J. Respir. Crit. Care Med. 207, 354358 (2023).
Article PubMed Google Scholar
Read More..