Shanmugam, N. et al. Microbial functional amyloids serve diverse purposes for structure, adhesion and defence. Biophys. Rev. 11, 287302 (2019).
CAS PubMed PubMed Central Article Google Scholar
Taglialegna, A., Lasa, I. & Valle, J. Amyloid structures as biofilm matrix scaffolds. J. Bacteriol. 198, 25792588 (2016).
CAS PubMed PubMed Central Article Google Scholar
Yarawsky, A. E., Johns, S. L., Schuck, P. & Herr, A. B. The biofilm adhesion protein Aap from Staphylococcus epidermidis forms zinc-dependent amyloid fibers. J. Biol. Chem. 295, 44114427 (2020).
CAS PubMed PubMed Central Article Google Scholar
Besingi, R. N. et al. Functional amyloids in Streptococcus mutans, their use as targets of biofilm inhibition and initial characterization of SMU_63c. Microbiol. (Read., Engl.) 163, 488501 (2017).
Article CAS Google Scholar
Oli, M. W. et al. Functional amyloid formation by Streptococcus mutans. Microbiology 158, 29032916 (2012).
CAS PubMed PubMed Central Article Google Scholar
Lembr, P., Di Martino, Patrick & Vendrely, C. Amyloid peptides derived from CsgA and FapC modify the viscoelastic properties of biofilm model matrices. Biofouling 30, 415426 (2014).
PubMed Article CAS Google Scholar
Schwartz, K., Ganesan, M., Payne, D. E., Solomon, M. J. & Boles, B. R. Extracellular DNA facilitates the formation of functional amyloids in Staphylococcus aureus biofilms. Mol. Microbiol 99, 123134 (2016).
CAS PubMed Article Google Scholar
Seker, U. O. S., Chen, A. Y., Citorik, R. J. & Lu, T. K. Synthetic biogenesis of bacterial amyloid nanomaterials with tunable inorganic-organic interfaces and electrical conductivity. ACS Synth. Biol. 6, 266275 (2017).
CAS PubMed Article Google Scholar
Huang, J. et al. Programmable and printable Bacillus subtilis biofilms as engineered living materials. Nat. Chem. Biol. 15, 3441 (2019).
CAS PubMed Article Google Scholar
Chen, A. Y. et al. Synthesis and patterning of tunable multiscale materials with engineered cells. Nat. Mater. 13, 515523 (2014).
CAS PubMed PubMed Central Article Google Scholar
Nguyen, P. Q., Botyanszki, Z., Tay, P. K. R. & Joshi, N. S. Programmable biofilm-based materials from engineered curli nanofibres. Nat. Commun. 5, 4945 (2014).
CAS PubMed Article Google Scholar
Nguyen, P. Q. Synthetic biology engineering of biofilms as nanomaterials factories. Biochem. Soc. Trans. 45, 585597 (2017).
CAS PubMed Article Google Scholar
Hammer, N. D. et al. The C-terminal repeating units of CsgB direct bacterial functional amyloid nucleation. J. Mol. Biol. 422, 376389 (2012).
CAS PubMed PubMed Central Article Google Scholar
Van Gerven, N., Klein, R. D., Hultgren, S. J. & Remaut, H. Bacterial amyloid formation: structural insights into Curli Biogensis. Trends Microbiol. 23, 693706 (2015).
PubMed PubMed Central Article CAS Google Scholar
Hammar, M., Arnqvist, A., Bian, Z., Olsen, A. & Normark, S. Expression of two csg operons is required for production of fibronectin- and congo red-binding curli polymers in Escherichia coli K-12. Mol. Microbiol. 18, 661670 (1995).
CAS PubMed Article Google Scholar
Tay, P. K. R., Nguyen, P. Q. & Joshi, N. S. A synthetic circuit for mercury bioremediation using self-assembling functional amyloids. ACS Synth. Biol. 6, 18411850 (2017).
PubMed Article CAS Google Scholar
Lv, J. et al. Force spectra of single bacterial amyloid CsgA nanofibers. RSC Adv. 10, 2198621992 (2020).
CAS PubMed PubMed Central Article Google Scholar
Duraj-Thatte, A. M., Praveschotinunt, P., Nash, T. R., Ward, F. R. & Joshi, N. S. Modulating bacterial and gut mucosal interactions with engineered biofilm matrix proteins. Sci. Rep. 22, 3475 (2018).
Article CAS Google Scholar
Van Gerven, N. et al. Secretion and functional display of fusion proteins through the curli biogenesis pathway. Mol. Microbiol. 91, 10221035 (2014).
PubMed Article CAS Google Scholar
Botyanszki, Z., Tay, P. K. R., Nguyen, P. Q., Nussbaumer, M. G. & Joshi, N. S. Engineered catalytic biofilms: Site-specific enzyme immobilization onto E. coli curli nanofibers. Biotechnol. Bioeng. 112, 20162024 (2015).
CAS PubMed Article Google Scholar
Zakeri, B. et al. Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin. Proc. Natl Acad. Sci. USA 109, E690E697 (2012).
CAS PubMed PubMed Central Article Google Scholar
Gallus, S. et al. Surface display of complex enzymes by in situ SpyCatcher-SpyTag interaction. Chembiochem 21, 21262131 (2020).
CAS PubMed PubMed Central Article Google Scholar
Cucarella, C. et al. Bap, a Staphylococcus aureus surface protein involved in biofilm formation. J. Bacteriol. 183, 28882896 (2001).
CAS PubMed PubMed Central Article Google Scholar
Lasa, I. & Penads, J. R. Bap: a family of surface proteins involved in biofilm formation. Res Microbiol 157, 99107 (2006).
CAS PubMed Article Google Scholar
Tormo, M. A., Knecht, E., Gtz, F., Lasa, I. & Penads, J. R. Bap-dependent biofilm formation by pathogenic species of Staphylococcus: evidence of horizontal gene transfer? Microbiol. (Read., Engl.) 151, 24652475 (2005).
CAS Article Google Scholar
Taglialegna, A. et al. Staphylococcal Bap proteins build amyloid scaffold biofilm matrices in response to environmental signals. PLoS Pathog. 12, e1005711 (2016).
PubMed PubMed Central Article CAS Google Scholar
Arrizubieta, M. J., Toledo-Arana, A., Amorena, B., Penads, J. R. & Lasa, I. Calcium inhibits bap-dependent multicellular behavior in Staphylococcus aureus. J. Bacteriol. 186, 74907498 (2004).
CAS PubMed PubMed Central Article Google Scholar
Ma, J. et al. Structural mechanism for modulation of functional amyloid and biofilm formation by Staphylococcal Bap protein switch. EMBO J. 15, e107500 (2021).
Google Scholar
Taglialegna, A. et al. The biofilm-associated surface protein Esp of Enterococcus faecalis forms amyloid-like fibers. NPJ Biofilms Microbiomes 6, 1512 (2020).
CAS PubMed PubMed Central Article Google Scholar
Lembr, P., Vendrely, C. & Di Martino, Patrick Identification of an amyloidogenic peptide from the Bap protein of Staphylococcus epidermidis. Protein Pept. Lett. 21, 7579 (2014).
PubMed Article CAS Google Scholar
Valle, J., Fang, X. & Lasa, I. Revisiting Bap multidomain protein: more than sticking bacteria together. Front Microbiol 11, 74907499 (2020).
Article Google Scholar
Mukherjee, M. & Cao, B. Engineering controllable biofilms for biotechnological applications. Micro. Biotechnol. 14, 7478 (2021).
Article Google Scholar
Reichhardt, C. et al. Congo Red interactions with rurli-producing E. coli and native curli amyloid fibers. PLoS ONE 10, e0140388 (2015).
PubMed PubMed Central Article CAS Google Scholar
Ng, C. K. et al. Genetic engineering biofilms in situ using ultrasound-mediated DNA delivery. Micro. Biotechnol. 14, 15801593 (2021).
CAS Article Google Scholar
Zhang, C. et al. Engineered Bacillus subtilis biofilms as living glues. Mater. Today 28, 4048 (2019).
Article Google Scholar
Flemming, H.-C. & Wingender, J. The biofilm matrix. Nat. Rev. Micro 8, 623633 (2010).
CAS Article Google Scholar
Daz-Caballero, M., Navarro, S. & Ventura, S. Soluble assemblies in the fibrillation pathway of prion-inspired artificial functional amyloids are highly cytotoxic. Biomacromolecules 21, 23342345 (2020).
PubMed Article CAS Google Scholar
Vendrell-Fernndez, S., Lozano-Picazo, P., Cuadros-Snchez, P., Tejero-Ojeda, M. M. & Giraldo, R. Conversion of the OmpF Porin into a device to gather amyloids on the E. coli outer membrane. ACS Synth. Biol. 11, 655667 (2021).
PubMed Article CAS Google Scholar
Shu, Q. et al. The E. coli CsgB nucleator of curli assembles to -sheet oligomers that alter the CsgA fibrillization mechanism. Proc. Natl Acad. Sci. USA 109, 65026507 (2012).
CAS PubMed PubMed Central Article Google Scholar
Zhang, M., Shi, H., Zhang, X., Zhang, X. & Huang, Y. Cryo-EM structure of the nonameric CsgG-CsgF complex and its implications for controlling curli biogenesis in enterobacteriaceae. PLoS Biol. 18, e3000748 (2020).
CAS PubMed PubMed Central Article Google Scholar
Romero, D., Vlamakis, H., Losick, R. & Kolter, R. An accessory protein required for anchoring and assembly of amyloid fibres in B. subtilis biofilms. Mol. Microbiol. 80, 11551168 (2011).
CAS PubMed PubMed Central Article Google Scholar
Terra, R., Stanley-Wall, N. R., Cao, G. & Lazazzera, B. A. Identification of Bacillus subtilis SipW as a bifunctional signal peptidase that controls surface-adhered biofilm formation. J. Bacteriol. 194, 27812790 (2012).
CAS PubMed PubMed Central Article Google Scholar
Courchesne, N.-M. D., Duraj-Thatte, A., Tay, P. K. R., Nguyen, P. Q. & Joshi, N. S. Scalable production of genetically engineered nanofibrous macroscopic materials via filtration. ACS Biomater. Sci. Eng. 3, 733741 (2016).
Article CAS Google Scholar
Piero-Lambea, C., Ruano-Gallego, D. & Fernndez, L. A. Engineered bacteria as therapeutic agents. Curr. Opin. Biotechnol. 35, 94102 (2015).
PubMed Article CAS Google Scholar
Brune, K. D. et al. Plug-and-Display: decoration of Virus-Like Particles via isopeptide bonds for modular immunization. Sci. Rep. 6, 1923413 (2016).
CAS PubMed PubMed Central Article Google Scholar
Van Gerven, N., Van der Verren, S. E., Reiter, D. M. & Remaut, H. The role of functional amyloids in bacterial virulence. J. Mol. Biol. 430, 36573684 (2018).
PubMed PubMed Central Article CAS Google Scholar
Friedland, R. P. Mechanisms of molecular mimicry involving the microbiota in neurodegeneration. J. Alzheimers Dis. 45, 349362 (2015).
CAS PubMed Article Google Scholar
Sampson, T. R. et al. A gut bacterial amyloid promotes -synuclein aggregation and motor impairment in mice. eLife 9, 39619 (2020).
Article Google Scholar
See the article here:
Bacterial biofilm functionalization through Bap amyloid engineering | npj Biofilms and Microbiomes - Nature.com
Read More..