Provost, J. & Vallee, G. Riemannian structure on manifolds of quantum states. Commun. Math. Phys. 76, 289 (1980).
Article ADS MathSciNet Google Scholar
Resta, R. The insulating state of matter: a geometrical theory. Eur. Phys. J. B 79, 121 (2011).
Article ADS Google Scholar
Bradlyn, B. et al. Topological quantum chemistry. Nature 547, 298305 (2017).
Article ADS Google Scholar
Lieb, E. H. Two theorems on the Hubbard model. Phys. Rev. Lett. 62, 1201 (1989).
Article ADS MathSciNet Google Scholar
Mielke, A. Ferromagnetism in the Hubbard model on line graphs and further considerations. J. Phys. A 24, 3311 (1991).
Article ADS MathSciNet Google Scholar
Clugru, D. et al. General construction and topological classification of crystalline flat bands. Nat. Phys. 18, 185189 (2022).
Article Google Scholar
Peotta, S. & Trm, P. Superfluidity in topologically nontrivial flat bands. Nat. Commun. 6, 8944 (2015).
Article ADS Google Scholar
Trm, P., Peotta, S. & Bernevig, B. A. Superconductivity, superfluidity and quantum geometry in twisted multilayer systems. Nat. Rev. Phys. 4, 528542 (2022).
Hosur, P. Circular photogalvanic effect on topological insulator surfaces: Berry-curvature-dependent response. Phys. Rev. B 83, 035309 (2011).
Article ADS Google Scholar
Neupert, T., Chamon, C. & Mudry, C. Measuring the quantum geometry of bloch bands with current noise. Phys. Rev. B 87, 245103 (2013).
Article ADS Google Scholar
Gao, Y., Yang, S. A. & Niu, Q. Field induced positional shift of bloch electrons and its dynamical implications. Phys. Rev. Lett. 112, 166601 (2014).
Article ADS Google Scholar
Morimoto, T. & Nagaosa, N. Topological nature of nonlinear optical effects in solids. Sci. Adv. 2, e1501524 (2016).
Article ADS Google Scholar
de Juan, F., Grushin, A. G., Morimoto, T. & Moore, J. E. Quantized circular photogalvanic effect in Weyl semimetals. Nat. Commun. 8, 15995 (2017).
Article ADS Google Scholar
Liang, L. et al. Band geometry, Berry curvature, and superfluid weight. Phys. Rev. B 95, 024515 (2017).
Article ADS Google Scholar
Ozawa, T. & Goldman, N. Extracting the quantum metric tensor through periodic driving. Phys. Rev. B 97, 201117 (2018).
Article ADS Google Scholar
Li, Y. & Haldane, F. D. M. Topological nodal Cooper pairing in doped Weyl metals. Phys. Rev. Lett. 120, 067003 (2018).
Article ADS Google Scholar
Gao, Y. & Xiao, D. Nonreciprocal directional dichroism induced by the quantum metric dipole. Phys. Rev. Lett. 122, 227402 (2019).
Article ADS Google Scholar
Gianfrate, A. et al. Measurement of the quantum geometric tensor and of the anomalous Hall drift. Nature 578, 381385 (2020).
Article ADS Google Scholar
Rhim, J.-W., Kim, K. & Yang, B.-J. Quantum distance and anomalous Landau levels of flat bands. Nature 584, 5963 (2020).
Article ADS Google Scholar
Kozii, V., Avdoshkin, A., Zhong, S. & Moore, J. E. Intrinsic anomalous Hall conductivity in a nonuniform electric field. Phys. Rev. Lett. 126, 156602 (2021).
Article ADS MathSciNet Google Scholar
Chen, W. & Huang, W. Quantum-geometry-induced intrinsic optical anomaly in multiorbital superconductors. Phys. Rev. Res. 3, L042018 (2021).
Article Google Scholar
Ahn, J., Guo, G.-Y., Nagaosa, N. & Vishwanath, A. Riemannian geometry of resonant optical responses. Nat. Phys. 18, 290295 (2022).
Article Google Scholar
Bardeen, J., Cooper, L. N. & Schrieffer, J. R. Theory of superconductivity. Phys. Rev. 108, 1175 (1957).
Article ADS MathSciNet Google Scholar
Migdal, A. Interaction between electrons and lattice vibrations in a normal metal. Sov. Phys. JETP 7, 996 (1958).
Google Scholar
Eliashberg, G. Interactions between electrons and lattice vibrations in a superconductor. Sov. Phys. JETP 11, 696 (1960).
MathSciNet Google Scholar
McMillan, W. L. Transition temperature of strong-coupled superconductors. Phys. Rev. 167, 331 (1968).
Article ADS Google Scholar
Allen, P. B. & Dynes, R. C. Transition temperature of strong-coupled superconductors reanalyzed. Phys. Rev. B 12, 905 (1975).
Article ADS Google Scholar
Vergniory, M. G. et al. A complete catalogue of high-quality topological materials. Nature 566, 480485 (2019).
Article ADS Google Scholar
Zhang, T. et al. Catalogue of topological electronic materials. Nature 566, 475479 (2019).
Article ADS Google Scholar
Tang, F., Po, H. C., Vishwanath, A. & Wan, X. Comprehensive search for topological materials using symmetry indicators. Nature 566, 486489 (2019).
Article ADS Google Scholar
Baroni, S., de Gironcoli, S., Dal Corso, A. & Giannozzi, P. Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 73, 515 (2001).
Article ADS Google Scholar
Nagamatsu, J., Nakagawa, N., Muranaka, T., Zenitani, Y. & Akimitsu, J. Superconductivity at 39 K in magnesium diboride. Nature 410, 6364 (2001).
Article ADS Google Scholar
Budko, S. L. et al. Boron isotope effect in superconducting mgb2. Phys. Rev. Lett. 86, 1877 (2001).
Article ADS Google Scholar
Hinks, D. G., Claus, H. & Jorgensen, J. D. The complex nature of superconductivity in MgB2 as revealed by the reduced total isotope effect. Nature 411, 457460 (2001).
Article ADS Google Scholar
Esterlis, I. et al. Breakdown of the MigdalEliashberg theory: a determinant quantum Monte Carlo study. Phys. Rev. B 97, 140501 (2018).
Article ADS Google Scholar
Sous, J., Chakraborty, M., Krems, R. V. & Berciu, M. Light bipolarons stabilized by peierls electronphonon coupling. Phys. Rev. Lett. 121, 247001 (2018).
Article ADS Google Scholar
Mitra, T. Electronphonon interaction in the modified tight-binding approximation. J. Phys. C 2, 52 (1969).
Article ADS Google Scholar
Trm, P., Liang, L. & Peotta, S. Quantum metric and effective mass of a two-body bound state in a flat band. Phys. Rev. B 98, 220511 (2018).
Article ADS Google Scholar
Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109 (2009).
Article ADS Google Scholar
Tarnopolsky, G., Kruchkov, A. J. & Vishwanath, A. Origin of magic angles in twisted bilayer graphene. Phys. Rev. Lett. 122, 106405 (2019).
Article ADS Google Scholar
Bernevig, B. A., Song, Z.-D., Regnault, N. & Lian, B. Twisted bilayer graphene. III. Interacting Hamiltonian and exact symmetries. Phys. Rev. B 103, 205413 (2021).
Article ADS Google Scholar
Song, Z.-D. & Bernevig, B. A. Magic-angle twisted bilayer graphene as a topological heavy fermion problem. Phys. Rev. Lett. 129, 047601 (2022).
Article ADS MathSciNet Google Scholar
Liu, C.-X., Chen, Y., Yazdani, A. & Bernevig B. A. ElectronK-phonon interaction in twisted bilayer graphene. Preprint at https://arxiv.org/abs/2303.15551 (2023).
Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 4350 (2018).
Article ADS Google Scholar
Kortus, J., Mazin, I. I., Belashchenko, K. D., Antropov, V. P. & Boyer, L. L. Superconductivity of metallic boron in MgB2. Phys. Rev. Lett. 86, 4656 (2001).
Article ADS Google Scholar
An, J. M. & Pickett, W. E. Superconductivity of MgB2: covalent bonds driven metallic. Phys. Rev. Lett. 86, 4366 (2001).
Article ADS Google Scholar
Kong, Y., Dolgov, O. V., Jepsen, O. & Andersen, O. K. Electronphonon interaction in the normal and superconducting states of MgB2. Phys. Rev. B 64, 020501 (2001).
Article ADS Google Scholar
Shukla, A. et al. Phonon dispersion and lifetimes in MgB2. Phys. Rev. Lett. 90, 095506 (2003).
Article ADS Google Scholar
Jin, K.-H. et al. Topological superconducting phase in high-Tc superconductor MgB2 with Diracnodal-line fermions. npj Comput. Mater. 5, 57 (2019).
Article ADS Google Scholar
Aroyo, M. I. et al. Bilbao crystallographic server: I. databases and crystallographic computing programs. Z. Kristallogr. Cryst. Mater. 221, 15 (2006).
Article Google Scholar
Ahn, J., Park, S. & Yang, B.-J. Failure of NielsenNinomiya theorem and fragile topology in two-dimensional systems with spacetime inversion symmetry: application to twisted bilayer graphene at magic angle. Phys. Rev. X 9, 021013 (2019).
Google Scholar
Link:
Non-trivial quantum geometry and the strength of electronphonon coupling - Nature.com
Read More..