Hiroto, S., Miyake, Y. & Shinokubo, H. Synthesis and functionalization of porphyrins through organometallic methodologies. Chem. Rev. 117, 29103043 (2017).
Article CAS PubMed Google Scholar
Barr, H. et al. Eradication of high-grade dysplasia in columnar-lined (Barretts) oesophagus by photodynamic therapy with endogenously generated protoporphyrin IX. Lancet 348, 584585 (1996).
Article CAS PubMed Google Scholar
Surdel, M. C. et al. Antibacterial photosensitization through activation of coproporphyrinogen oxidase. Proc. Natl Acad. Sci. USA 114, E6652E6659 (2017).
Article CAS PubMed PubMed Central Google Scholar
Drury, S. L. et al. Simultaneous exposure to intracellular and extracellular photosensitizers for the treatment of Staphylococcus aureus infections. Antimicrob. Agents Chemother. 65, e0091921 (2021).
Poulos, T. L. Heme enzyme structure and function. Chem. Rev. 114, 39193962 (2014).
Article CAS PubMed PubMed Central Google Scholar
Zhang, J. et al. Recent advances in microbial production of high-value compounds in the tetrapyrrole biosynthesis pathway. Biotechnol. Adv. 55, 107904 (2022).
Article CAS PubMed Google Scholar
Choi, K. R., Yu, H. E., Lee, H. & Lee, S. Y. Improved production of heme using metabolically engineered Escherichia coli. Biotechnol. Bioeng. 119, 31783193 (2022).
Article CAS PubMed Google Scholar
Zhang, W., Lai, W. & Cao, R. Energy-related small molecule activation reactions: oxygen reduction and hydrogen and oxygen evolution reactions catalyzed by porphyrin- and corrole-based systems. Chem. Rev. 117, 37173797 (2017).
Article CAS PubMed Google Scholar
Singh, S. et al. Glycosylated porphyrins, phthalocyanines, and other porphyrinoids for diagnostics and therapeutics. Chem. Rev. 115, 1026110306 (2015).
Article CAS PubMed PubMed Central Google Scholar
Espinas, N. A., Kobayashi, K., Takahashi, S., Mochizuki, N. & Masuda, T. Evaluation of unbound free heme in plant cells by differential acetone extraction. Plant Cell Physiol. 53, 13441354 (2012).
Article CAS PubMed Google Scholar
In, M.-J., Kim, D. C., Chae, H. J. & Oh, N.-S. Effects of degree of hydrolysis and pH on the solubility of heme-iron enriched peptide in hemoglobin hydrolysate. Biosci. Biotechnol. Biochem. 67, 365367 (2003).
Article CAS PubMed Google Scholar
Lichtenthaler, H. K. & Buschmann, C. Extraction of phtosynthetic tissues: chlorophylls and carotenoids. Curr. Protoc. Food Anal. Chem. 1, F4.2.1F4.2.6 (2001).
Article Google Scholar
Kwon Seok, J., de Boer Arjo, L., Petri, R. & Schmidt-Dannert, C. High-level production of porphyrins in metabolically engineered Escherichia coli: systematic extension of a pathway assembled from overexpressed genes involved in heme biosynthesis. Appl. Environ. Microbiol. 69, 48754883 (2003).
Article PubMed PubMed Central Google Scholar
Bali, S. et al. Molecular hijacking of siroheme for the synthesis of heme and d1 heme. Proc. Natl Acad. Sci. USA 108, 1826018265 (2011).
Article CAS PubMed PubMed Central Google Scholar
Dailey Harry, A. et al. Prokaryotic heme biosynthesis: multiple pathways to a common essential product. Microbiol. Mol. Biol. Rev. 81, e00048-16 (2017).
PubMed PubMed Central Google Scholar
Dailey, H. A., Gerdes, S., Dailey, T. A., Burch, J. S. & Phillips, J. D. Noncanonical coproporphyrin-dependent bacterial heme biosynthesis pathway that does not use protoporphyrin. Proc. Natl Acad. Sci. USA 112, 22102215 (2015).
Article CAS PubMed PubMed Central Google Scholar
Fang, H. et al. Metabolic engineering of Escherichia coli for de novo biosynthesis of vitamin B12. Nat. Commun. 9, 4917 (2018).
Article PubMed PubMed Central Google Scholar
Chen, G. E. et al. Complete enzyme set for chlorophyll biosynthesis in Escherichia coli. Sci. Adv. 4, eaaq1407 (2018).
Article PubMed PubMed Central Google Scholar
Nielsen, M. T. et al. Assembly of highly standardized gene fragments for high-level production of porphyrins in E. coli. ACS Synth. Biol. 4, 274282 (2015).
Article CAS PubMed Google Scholar
Zhang, J. et al. Heme biosensor-guided in vivo pathway optimization and directed evolution for efficient biosynthesis of heme. Biotechnol. Biofuels Bioprod. 16, 33 (2023).
Article PubMed PubMed Central Google Scholar
Dai, J. et al. Differential gene content and gene expression for bacterial evolution and speciation of Shewanella in terms of biosynthesis of heme and heme-requiring proteins. BMC Microbiol. 19, 173 (2019).
Article PubMed PubMed Central Google Scholar
Ouchane, S., Picaud, M., Therizols, P., Reiss-Husson, F. & Astier, C. Global regulation of photosynthesis and respiration by FnrL: the first two targets in the tetrapyrrole pathway. J. Biol. Chem. 282, 76907699 (2007).
Article CAS PubMed Google Scholar
Toriya, M. et al. Zincphyrin, a novel coproporphyrin III with zinc from Streptomyces sp. J. Antibiot. (Tokyo) 46, 196200 (1993).
Article CAS PubMed Google Scholar
Nguyen, H. T. et al. Exploration of cryptic organic photosensitive compound as Zincphyrin IV in Streptomyces venezuelae ATCC 15439. Appl. Microbiol. Biotechnol. 104, 713724 (2020).
Article CAS PubMed Google Scholar
Cleary, J. L., Kolachina, S., Wolfe, B. E. & Sanchez, L. M. Coproporphyrin III produced by the bacterium Glutamicibacter arilaitensis binds zinc and is upregulated by fungi in cheese rinds. mSystems. 3, e00036-18 (2018).
Zhao, X. R., Choi, K. R. & Lee, S. Y. Metabolic engineering of Escherichia coli for secretory production of free haem. Nat. Catal. 1, 720728 (2018).
Article CAS Google Scholar
Ko, Y. J. et al. Animal-free heme production for artificial meat in Corynebacterium glutamicum via systems metabolic and membrane engineering. Metab. Eng. 66, 217228 (2021).
Article CAS PubMed Google Scholar
Ishchuk, O. P. et al. Genome-scale modeling drives 70-fold improvement of intracellular heme production in Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 119, e2108245119 (2022).
Article CAS PubMed PubMed Central Google Scholar
Choi, K. R., Yu, H. E. & Lee, S. Y. Production of zinc protoporphyrin IX by metabolically engineered Escherichia coli. Biotechnol. Bioeng. 119, 33193325 (2022).
Article CAS PubMed Google Scholar
Nelson, N. Metal ion transporters and homeostasis. EMBO J. 18, 43614371 (1999).
Article CAS PubMed PubMed Central Google Scholar
Frunzke, J., Gtgens, C., Brocker, M. & Bott, M. Control of heme homeostasis in Corynebacterium glutamicum by the two-component system HrrSA. J. Bacteriol. 193, 12121221 (2011).
Article CAS PubMed PubMed Central Google Scholar
Koripella, R. K. et al. Mechanism of elongation factor-G-mediated fusidic acid resistance and fitness compensation in Staphylococcus aureus. J. Biol. Chem. 287, 3025730267 (2012).
Article CAS PubMed PubMed Central Google Scholar
Kojima, I., Maruhashi, K., Sato, H. & Fujiwara, Y. A highly active producer of coproporphyrin III and uroporphyrin III. J. Ferment. Bioeng. 76, 527529 (1993).
Article CAS Google Scholar
Zhang, L. et al. Phosphate limitation increases coenzyme Q10 production in industrial Rhodobacter sphaeroides HY01. Synth. Syst. Biotechnol. 4, 212219 (2019).
Article PubMed PubMed Central Google Scholar
Shi, T. et al. Screening and engineering of high-activity promoter elements through transcriptomics and red fluorescent protein visualization in Rhodobacter sphaeroides. Synth. Syst. Biotechnol. 6, 335342 (2021).
Article CAS PubMed PubMed Central Google Scholar
Lee, S. Q. E., Tan, T. S., Kawamukai, M. & Chen, E. S. Cellular factories for coenzyme Q10 production. Microb. Cell. Fact. 16, 39 (2017).
Article PubMed PubMed Central Google Scholar
Lu, W. et al. Identification and elimination of metabolic bottlenecks in the quinone modification pathway for enhanced coenzyme Q10 production in Rhodobacter sphaeroides. Metab. Eng. 29, 208216 (2015).
Article CAS PubMed Google Scholar
Wang, Z.-J. et al. Oxygen uptake rate controlling strategy balanced with oxygen supply for improving coenzyme Q10 production by Rhodobacter sphaeroides. Biotechnol. Bioprocess Eng. 25, 459469 (2020).
Article CAS Google Scholar
Klaus, O. et al. Engineering phototrophic bacteria for the production of terpenoids. Curr. Opin. Biotechnol. 77, 102764 (2022).
Article CAS PubMed Google Scholar
Qiang, S. et al. Elevated -carotene synthesis by the engineered rhodobacter sphaeroides with enhanced CrtY expression. J. Agric. Food Chem. 67, 95609568 (2019).
Article CAS PubMed Google Scholar
Orsi, E. et al. Growth-uncoupled isoprenoid synthesis in Rhodobacter sphaeroides. Biotechnol. Biofuels 13, 123 (2020).
Article CAS PubMed PubMed Central Google Scholar
Hu, J., Yang, H., Wang, X., Cao, W. & Guo, L. Strong pH dependence of hydrogen production from glucose by Rhodobacter sphaeroides.Int. J. Hydrog. Energy 45, 94519458 (2020).
Article CAS Google Scholar
Li, S. et al. Photoautotrophic hydrogen production of Rhodobacter sphaeroides in a microbial electrosynthesis cell. Bioresour. Technol. 320, 124333 (2021).
Article CAS PubMed Google Scholar
Orsi, E., Beekwilder, J., Eggink, G., Kengen, S. W. M. & Weusthuis, R. A. The transition of Rhodobacter sphaeroides into a microbial cell factory. Biotechnol. Bioeng. 118, 531541 (2021).
Article CAS PubMed Google Scholar
Oh, J.-I. & Kaplan, S. Generalized approach to the regulation and integration of gene expression. Mol. Microbiol. 39, 11161123 (2001).
Article CAS PubMed Google Scholar
Imam, S., Noguera, D. R. & Donohue, T. J. Global analysis of photosynthesis transcriptional regulatory networks. PLoS Genet. 10, e1004837 (2014).
Article PubMed PubMed Central Google Scholar
Kang, Z. et al. Recent advances in microbial production of -aminolevulinic acid and vitamin B12. Biotechnol. Adv. 30, 15331542 (2012).
Article CAS PubMed Google Scholar
Nishikawa, S. et al. Rhodobacter sphaeroides mutants which accumulate 5-aminolevulinic acid under aerobic and dark conditions. J. Biosci. Bioeng. 87, 798804 (1999).
Article CAS PubMed Google Scholar
Urakami, T. & Yoshida, T. Production of ubiquinone and bacteriochlorophyll a by Rhodobacter sphaeroides and Rhodobacter sulfidophilus. J. Ferment. Bioeng. 76, 191194 (1993).
Article CAS Google Scholar
Zeilstra-Ryalls, J. H. & Kaplan, S. Aerobic and anaerobic regulation in Rhodobacter sphaeroides 2.4.1: the role of the fnrL gene. J. Bacteriol. 177, 64226431 (1995).
Article CAS PubMed PubMed Central Google Scholar
Wei, W. et al. Lysine acetylation regulates the function of the global anaerobic transcription factor FnrL in Rhodobacter sphaeroides. Mol. Microbiol. 104, 278293 (2017).
Article CAS PubMed Google Scholar
Read the original:
High-yield porphyrin production through metabolic engineering and biocatalysis - Nature.com
Read More..