Mohri, M., Rostamizadeh, A. & Talwalkar, A. Foundations of Machine Learning (MIT Press, 2018).
Vamathevan, J. et al. Applications of machine learning in drug discovery and development. Nat. Rev. Drug Discov. 18, 463477 (2019).
Article Google Scholar
Schmidt, J., Marques, M. R., Botti, S. & Marques, M. A. Recent advances and applications of machine learning in solid-state materials science. npj Comput. Mater. 5, 83 (2019).
Article Google Scholar
Blum, A. L. & Rivest, R. L. Training a 3-node neural network is NP-complete. Neural Netw. 5, 117127 (1992).
Article Google Scholar
Neyshabur, B., Li, Z., Bhojanapalli, S., LeCun, Y., & Srebro, N. Towards understanding the role of over-parametrization in generalization of neural networks. Preprint at arXiv https://doi.org/10.48550/arXiv.1805.12076 (2018).
Zhang, C., Bengio, S., Hardt, M., Recht, B. & Vinyals, O. Understanding deep learning (still) requires rethinking generalization. Commun. ACM 64, 107115 (2021).
Article Google Scholar
Allen-Zhu, Z., Li, Y. & Song, Z. A convergence theory for deep learning via over-parameterization. In Proceedings of the 36th International Conference on Machine Learning 242252 (PMLR, 2019).
Du, S. S., Zhai, X., Poczos, B., & Singh, A. Gradient descent provably optimizes over-parameterized neural networks. Preprint at arXiv https://doi.org/10.48550/arXiv.1810.02054 (2018).
Preskill, J. Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018).
Article Google Scholar
Cerezo, M. et al. Variational quantum algorithms. Nat. Rev. Phys. 3, 625644 (2021).
Article Google Scholar
Bharti, K. et al. Noisy intermediate-scale quantum algorithms. Rev. Mod. Phys. 94, 015004 (2022).
Article MathSciNet Google Scholar
Huang, H.-Y. et al. Power of data in quantum machine learning. Nat. Commun. 12, 2631 (2021).
Article Google Scholar
Abbas, A. et al. The power of quantum neural networks. Nat. Comput. Sci. 1, 403409 (2021).
Article Google Scholar
Bittel, L. & Kliesch, M. Training variational quantum algorithms is NP-hard. Phys. Rev. Lett. 127, 120502 (2021).
Article MathSciNet Google Scholar
Wierichs, D., Gogolin, C. & Kastoryano, M. Avoiding local minima in variational quantum eigensolvers with the natural gradient optimizer. Phys. Rev. Res. 2, 043246 (2020).
Article Google Scholar
Anschuetz, E. R. Critical points in quantum generative models. Preprint at arXiv https://doi.org/10.48550/arXiv.2109.06957 (2021).
McClean, J. R., Boixo, S., Smelyanskiy, V. N., Babbush, R. & Neven, H. Barren plateaus in quantum neural network training landscapes. Nat. Commun. 9, 4812 (2018).
Article Google Scholar
Cerezo, M., Sone, A., Volkoff, T., Cincio, L. & Coles, P. J. Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nat. Commun. 12, 1791 (2021).
Article Google Scholar
Wang, S. et al. Noise-induced barren plateaus in variational quantum algorithms. Nat. Commun. 12, 6961 (2021).
Article Google Scholar
Stilck Frana, D. & Garcia-Patron, R. Limitations of optimization algorithms on noisy quantum devices. Nat. Phys. 17, 12211227 (2021).
Article Google Scholar
Wiersema, R. et al. Exploring entanglement and optimization within the Hamiltonian variational ansatz. PRX Quantum 1, 020319 (2020).
Article Google Scholar
Kiani, B. T., Lloyd, S. & Maity, R. Learning unitaries by gradient descent. Preprint at arXiv https://doi.org/10.48550/arXiv.2001.11897 (2020).
Funcke, L. et al. Best-approximation error for parametric quantum circuits. In 2021 IEEE International Conference on Web Services (ICWS) 693702 (IEEE, 2021).
Lee, J., Magann, A. B., Rabitz, H. A. & Arenz, C. Progress toward favorable landscapes in quantum combinatorial optimization. Phys. Rev. A 104, 032401 (2021).
Article MathSciNet Google Scholar
Zeier, R. & Schulte-Herbrggen, T. Symmetry principles in quantum systems theory. J. Math. Phys. 52, 113510 (2011).
Article MathSciNet MATH Google Scholar
Meyer, J. J. Fisher information in noisy intermediate-scale quantum applications. Quantum 5, 539 (2021).
Article Google Scholar
Moore, K. W. & Rabitz, H. Exploring constrained quantum control landscapes. J. Chem. Phys. 137, 134113 (2012).
Article Google Scholar
Larocca, M., Calzetta, E. & Wisniacki, D. A. Exploiting landscape geometry to enhance quantum optimal control. Phys. Rev. A 101, 023410 (2020).
Article MathSciNet Google Scholar
Wu, R.-B., Long, R., Dominy, J., Ho, T.-S. & Rabitz, H. Singularities of quantum control landscapes. Phys. Rev. A 86, 013405 (2012).
Article Google Scholar
Rach, N., Mller, M. M., Calarco, T. & Montangero, S. Dressing the chopped-random-basis optimization: a bandwidth-limited access to the trap-free landscape. Phys. Rev. A 92, 062343 (2015).
Article Google Scholar
Larocca, M., Poggi, P. M. & Wisniacki, D. A. Quantum control landscape for a two-level system near the quantum speed limit. J. Phys. A Math. Theor. 51, 385305 (2018).
Article MathSciNet MATH Google Scholar
Larocca, M. et al. Diagnosing barren plateaus with tools from quantum optimal control. Quantum 6, 824 (2022).
Article Google Scholar
Haug, T., Bharti, K. & Kim, M. S. Capacity and quantum geometry of parametrized quantum circuits. PRX Quantum 2, 040309 (2021).
Article Google Scholar
Larocca, M., Calzetta, E. & Wisniacki, D. Fourier compression: a customization method for quantum control protocols. Phys. Rev. A 102, 033108 (2020).
Article Google Scholar
Efthymiou, S. et al. Qibo: a framework for quantum simulation with hardware acceleration. Quantum Sci. Technol. 7, 015018 (2021).
Article Google Scholar
Peruzzo, A. et al. A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 5, 4213 (2014).
Article Google Scholar
Garca-Martn, D., Larocca, M. & Cerezo, M. Effects of noise on the overparametrization of quantum neural networks. Preprint at arXiv https://doi.org/10.48550/arXiv.2302.05059 (2023).
Fukumizu, K. A regularity condition of the information matrix of a multilayer perceptron network. Neural Netw. 9, 871879 (1996).
Article Google Scholar
Chan, N. & Kwong, M. K. Hermitian matrix inequalities and a conjecture. Am. Math. Monthly 92, 533541 (1985).
Article MathSciNet MATH Google Scholar
Glaser, S. J. et al. Training Schrdingers cat: quantum optimal control. Eur. Phys. J. D 69, 279 (2015).
Article Google Scholar
Rembold, P. et al. Introduction to quantum optimal control for quantum sensing with nitrogen-vacancy centers in diamond. AVS Quantum Sci. 2, 024701 (2020).
Article Google Scholar
Ebadi, S. et al. Quantum phases of matter on a 256-atom programmable quantum simulator. Nature 595, 227232 (2021).
Article Google Scholar
Magann, A. B., Rudinger, K. M., Grace, M. D. & Sarovar, M. Feedback-based quantum optimization. Phys. Rev. Lett. 129, 250502 (2022).
Article Google Scholar
Magann, A. B. et al. From pulses to circuits and back again: a quantum optimal control perspective on variational quantum algorithms. PRX Quantum 2, 010101 (2021).
Article Google Scholar
Hsieh, M., Wu, R. & Rabitz, H. Topology of the quantum control landscape for observables. J. Chem. Phys. 130, 104109 (2009).
Article Google Scholar
Ho, T.-S., Dominy, J. & Rabitz, H. Landscape of unitary transformations in controlled quantum dynamics. Phys. Rev. A 79, 013422 (2009).
Article MathSciNet Google Scholar
Riviello, G. et al. Searching for quantum optimal control fields in the presence of singular critical points. Phys. Rev. A 90, 013404 (2014).
Article Google Scholar
Schatzki, L., Arrasmith, A., Coles, P. J. & Cerezo, M. Entangled datasets for quantum machine learning. Preprint at arXiv https://doi.org/10.48550/arXiv.2109.03400 (2021).
Garca-Martn, D. DiegoGM91/theory-of-overparametrization: v0.0.1. Zenodo https://doi.org/10.5281/zenodo.7916659 (2023).
Go here to read the rest:
Theory of overparametrization in quantum neural networks - Nature.com
Read More..