Nunes, L. J. R., Causer, T. P. & Ciolkosz, D. Biomass for energy: A review on supply chain management models. Renew. Sustain. Energy Rev. 120, 109658 (2020).
Article Google Scholar
Wang, G. et al. A review of recent advances in biomass pyrolysis. Energy Fuels 34, 1555715578 (2020).
Article CAS Google Scholar
Osman, A. I. et al. Conversion of biomass to biofuels and life cycle assessment: A review. Environ. Chem. Lett. 19, 40754118 (2021).
Article CAS Google Scholar
Bakhtyari, A., Makarem, M. A. & Rahimpour, M. R. Bioenergy Systems for the Future 87148 (Woodhead Publishing, 2017).
Book Google Scholar
Testa, M. L. & Tummino, M. L. Lignocellulose biomass as a multifunctional tool for sustainable catalysis and chemicals: An overview. Catalysts 11, 125 (2021).
Article CAS Google Scholar
Lin, C.-Y. & Lu, C. Development perspectives of promising lignocellulose feedstocks for production of advanced generation biofuels: A review. Renew. Sustain. Energy Rev. 136, 110445 (2021).
Article CAS Google Scholar
Wang, C. et al. A review of conversion of lignocellulose biomass to liquid transport fuels by integrated refining strategies. Fuel Process. Technol. 208, 106485 (2020).
Article CAS Google Scholar
Yamaguchi, A., Sato, O., Mimura, N. & Shirai, M. Catalytic production of sugar alcohols from lignocellulosic biomass. Catal. Today 265, 199202. https://doi.org/10.1016/j.cattod.2015.08.026 (2016).
Article CAS Google Scholar
Erian, A. M. & Sauer, M. Utilizing yeasts for the conversion of renewable feedstocks to sugar alcohols: A review. Bioresour. Technol. 346, 126296. https://doi.org/10.1016/j.biortech.2021.126296 (2022).
Article CAS PubMed Google Scholar
da Costa Lopes, A. M., Joo, K. G., Morais, A. R. C., Bogel-ukasik, E. & Bogel-ukasik, R. Ionic liquids as a tool for lignocellulosic biomass fractionation. Sustain. Chem. Process. 1, 131 (2013).
Article Google Scholar
Abbasi, A. R. et al. Recent advances in producing sugar alcohols and functional sugars by engineering Yarrowia lipolytica. Front. Bioeng. Biotechnol. 9, 648382 (2021).
Article PubMed PubMed Central Google Scholar
Fickers, P., Cheng, H. & SzeKiLin, C. Sugar alcohols and organic acids synthesis in Yarrowia lipolytica: Where are we?. Microorganisms 8, 574 (2020).
Article CAS PubMed PubMed Central Google Scholar
Park, Y.-C., Oh, E. J., Jo, J.-H., Jin, Y.-S. & Seo, J.-H. Recent advances in biological production of sugar alcohols. Curr. Opin. Biotechnol. 37, 105113 (2016).
Article CAS PubMed Google Scholar
Grembecka, M. Sugar alcoholstheir role in the modern world of sweeteners: A review. Eur. Food Res. Technol. 241, 114 (2015).
Article CAS Google Scholar
Amarasekara, A. S. Ionic liquids in biomass processing. Isr. J. Chem. 59, 789802 (2019).
Article CAS Google Scholar
Tan, S. S. Y. & MacFarlane, D. R. Ionic liquids in biomass processing. Ionic Liquids 1, 311339 (2009).
Article Google Scholar
Rajamani, S., Santhosh, R., Raghunath, R. & Jadhav, S. A. Value-added chemicals from sugarcane bagasse using ionic liquids. Chem. Pap. 75, 56055622 (2021).
Article CAS Google Scholar
Parvaneh, K., Rasoolzadeh, A. & Shariati, A. Modeling the phase behavior of refrigerants with ionic liquids using the QC-PC-SAFT equation of state. J. Mol. Liq. 274, 497504. https://doi.org/10.1016/j.molliq.2018.10.116 (2019).
Article CAS Google Scholar
Singh, S. K. & Savoy, A. W. Ionic liquids synthesis and applications: An overview. J. Mol. Liq. 297, 112038 (2020).
Article CAS Google Scholar
Sedghamiz, M. A., Rasoolzadeh, A. & Rahimpour, M. R. The ability of artificial neural network in prediction of the acid gases solubility in different ionic liquids. J. CO2 Util. 9, 3947. https://doi.org/10.1016/j.jcou.2014.12.003 (2015).
Article CAS Google Scholar
Rasoolzadeh, A. et al. A thermodynamic framework for determination of gas hydrate stability conditions and water activity in ionic liquid aqueous solution. J. Mol. Liq. 347, 118358 (2022).
Article CAS Google Scholar
Setiawan, R., Daneshfar, R., Rezvanjou, O., Ashoori, S. & Naseri, M. Surface tension of binary mixtures containing environmentally friendly ionic liquids: Insights from artificial intelligence. Environ. Dev. Sustain. 23, 1760617627 (2021).
Article Google Scholar
Rasoolzadeh, A., Javanmardi, J., Eslamimanesh, A. & Mohammadi, A. H. Experimental study and modeling of methane hydrate formation induction time in the presence of ionic liquids. J. Mol. Liq. 221, 149155. https://doi.org/10.1016/j.molliq.2016.05.016 (2016).
Article CAS Google Scholar
Welton, T. Ionic liquids: A brief history. Biophys. Rev. 10, 691706 (2018).
Article CAS PubMed PubMed Central Google Scholar
Brandt, A., Grsvik, J., Hallett, J. P. & Welton, T. Deconstruction of lignocellulosic biomass with ionic liquids. Green Chem. 15, 550583 (2013).
Article CAS Google Scholar
Reddy, P. A critical review of ionic liquids for the pretreatment of lignocellulosic biomass. S. Afr. J. Sci. 111, 19 (2015).
Article Google Scholar
Tu, W.-C. & Hallett, J. P. Recent advances in the pretreatment of lignocellulosic biomass. Curr. Opin. Green Sustain. Chem. 20, 1117 (2019).
Article Google Scholar
Usmani, Z. et al. Ionic liquid based pretreatment of lignocellulosic biomass for enhanced bioconversion. Biores. Technol. 304, 123003 (2020).
Article CAS Google Scholar
Roy, S. & Chundawat, S. P. S. Ionic liquid-based pretreatment of lignocellulosic biomass for bioconversion: A critical review. BioEnergy Res. 1, 116 (2022).
Google Scholar
Xia, Z. et al. Processing and valorization of cellulose, lignin and lignocellulose using ionic liquids. J. Bioresour. Bioprod. 5, 7995 (2020).
Article CAS Google Scholar
Carneiro, A. P., Rodrguez, O. & Macedo, E. A. Solubility of monosaccharides in ionic liquids: Experimental data and modeling. Fluid Phase Equilib. 314, 2228 (2012).
Article CAS Google Scholar
Carneiro, A. P., Rodrguez, O. & Macedo, E. A. Solubility of xylitol and sorbitol in ionic liquids: Experimental data and modeling. J. Chem. Thermodyn. 55, 184192 (2012).
Article CAS Google Scholar
Carneiro, A. P., Held, C., Rodriguez, O., Sadowski, G. & Macedo, E. A. Solubility of sugars and sugar alcohols in ionic liquids: Measurement and PC-SAFT modeling. J. Phys. Chem. B 117, 99809995 (2013).
Article CAS PubMed Google Scholar
Carneiro, A. P., Rodrguez, O. & Macedo, E. N. A. Fructose and glucose dissolution in ionic liquids: Solubility and thermodynamic modeling. Ind. Eng. Chem. Res. 52, 34243435 (2013).
Article CAS Google Scholar
Mohan, M., Goud, V. V. & Banerjee, T. Solubility of glucose, xylose, fructose and galactose in ionic liquids: Experimental and theoretical studies using a continuum solvation model. Fluid Phase Equilib. 395, 3343 (2015).
Article CAS Google Scholar
Mohan, M., Banerjee, T. & Goud, V. V. Solid liquid equilibrium of cellobiose, sucrose, and maltose monohydrate in ionic liquids: Experimental and quantum chemical insights. J. Chem. Eng. Data 61, 29232932 (2016).
Article CAS Google Scholar
Paduszynski, K., Okuniewski, M. & Domanska, U. Sweet-in-green systems based on sugars and ionic liquids: New solubility data and thermodynamic analysis. Ind. Eng. Chem. Res. 52, 1848218491 (2013).
Article CAS Google Scholar
Paduszyski, K., Okuniewski, M. & Domaska, U. Solidliquid phase equilibria in binary mixtures of functionalized ionic liquids with sugar alcohols: New experimental data and modelling. Fluid Phase Equilib. 403, 167175 (2015).
Article Google Scholar
Paduszyski, K., Okuniewski, M. & Domaska, U. An effect of cation functionalization on thermophysical properties of ionic liquids and solubility of glucose in themmeasurements and PC-SAFT calculations. J. Chem. Thermodyn. 92, 8190 (2016).
Article Google Scholar
Teles, A. R. R. et al. Solubility and solvation of monosaccharides in ionic liquids. Phys. Chem. Chem. Phys. 18, 1972219730 (2016).
Article CAS PubMed PubMed Central Google Scholar
Yang, X., Wang, J. & Fang, Y. Solubility and solution thermodynamics of glucose and fructose in three asymmetrical dicationic ionic liquids from 323.15 K to 353.15 K. J. Chem. Thermodyn. 139, 105879 (2019).
Article CAS Google Scholar
Abbasi, M., Pazuki, G., Raisi, A. & Baghbanbashi, M. Thermophysical and rheological properties of sorbitol+([mmim](MeO)2PO2) ionic liquid solutions: Solubility, density and viscosity. Food Chem. 320, 126566 (2020).
Article CAS PubMed Google Scholar
Zarei, S., Abdolrahimi, S. & Pazuki, G. Thermophysical characterization of sorbitol and 1-ethyl-3-methylimidazolium acetate mixtures. Fluid Phase Equilib. 497, 140150 (2019).
Article Google Scholar
Ruiz-Aceituno, L., Carrero-Carralero, C., Ramos, L. & Sanz, M. L. Selective fractionation of sugar alcohols using ionic liquids. Sep. Purif. Technol. 209, 800805 (2019).
Article CAS Google Scholar
Jeon, P. R. & Lee, C.-H. Artificial neural network modelling for solubility of carbon dioxide in various aqueous solutions from pure water to brine. J. CO2 Util. 47, 101500 (2021).
Article CAS Google Scholar
Amar, M. N. Modeling solubility of sulfur in pure hydrogen sulfide and sour gas mixtures using rigorous machine learning methods. Int. J. Hydrogen Energy 45, 3327433287 (2020).
Article Google Scholar
Hemmati-Sarapardeh, A., Amar, M. N., Soltanian, M. R., Dai, Z. & Zhang, X. Modeling CO2 solubility in water at high pressure and temperature conditions. Energy Fuels 34, 47614776 (2020).
Article CAS Google Scholar
Vanani, M. B., Daneshfar, R. & Khodapanah, E. A novel MLP approach for estimating asphaltene content of crude oil. Pet. Sci. Technol. 37, 22382245 (2019).
Article CAS Google Scholar
Daneshfar, R., Keivanimehr, F., Mohammadi-Khanaposhtani, M. & Baghban, A. A neural computing strategy to estimate dew-point pressure of gas condensate reservoirs. Pet. Sci. Technol. 38, 706712 (2020).
Article CAS Google Scholar
Bakhtyari, A., Mofarahi, M. & Iulianelli, A. Combined mathematical and artificial intelligence modeling of catalytic bio-methanol conversion to dimethyl ether. Energy Convers. Manag. 276, 116562. https://doi.org/10.1016/j.enconman.2022.116562 (2023).
Article CAS Google Scholar
Continued here:
Application of machine learning techniques to the modeling of ... - Nature.com
Read More..