Will we ever be able to accurately predict solubility? | Scientific Data – Nature.com

Kennedy, T. Managing the drug discovery/development interface. Drug Discov. Today 2, 436444 (1997).

Article Google Scholar

Kola, I. & Landis, J. Can the pharmaceutical industry reduce attrition rates? Nat. Rev. Drug Discov. 3, 711716 (2004).

Article CAS PubMed Google Scholar

Millard, J., Alvarez-Nez, F. & Yalkowsky, S. Solubilization by cosolvents. Establishing useful constants for the log-linear model. Int. J. Pharm. 245, 153166 (2002).

Article CAS PubMed Google Scholar

Jouyban, A. & Abolghassemi Fakhree, M. A. Solubility prediction methods for drug/drug like molecules. Recent Pat. Chem. Eng. 1, 220231 (2008).

Article CAS Google Scholar

van de Waterbeemd, H. Improving compound quality through in vitro and in silico physicochemical profiling. Chem. Biodivers. 6, 17601766 (2009).

Article PubMed Google Scholar

Llompart, P. et al Will we ever be able to accurately predict solubility? Recherche Data Gouv https://doi.org/10.57745/CZVZIA (2023)

Wang, J. & Hou, T. Recent advances on aqueous solubility prediction. Comb. Chem. High Throughput Screen. 14, 328338 (2011).

Article CAS PubMed Google Scholar

Elder, D. P., Holm, R. & Diego, H. L. Use of pharmaceutical salts and cocrystals to address the issue of poor solubility. Int. J. Pharm. 453, 88100 (2013). de.

Article CAS PubMed Google Scholar

Saal, C. & Petereit, A. C. Optimizing solubility: Kinetic versus thermodynamic solubility temptations and risks. Eur. J. Pharm. Sci. 47, 589595 (2012).

Article CAS PubMed Google Scholar

Wang, J. et al. Development of reliable aqueous solubility models and their application in druglike analysis. J. Chem. Inf. Model. 47, 13951404 (2007).

Article CAS PubMed Google Scholar

Johnson, S. R. & Zheng, W. Recent progress in the computational prediction of aqueous solubility and absorption. AAPS J. 8, E27E40 (2006).

Article CAS PubMed PubMed Central Google Scholar

Delaney, J. S. Predicting aqueous solubility from structure. Drug Discov. Today 10, 289295 (2005).

Article CAS PubMed Google Scholar

OECD. Test No. 105: Water Solubility. OECD Guidelines for the Testing of Chemicals, Section 1 https://read.oecd-ilibrary.org/environment/test-no-105-water-solubility_9789264069589-en (1995).

Llins, A., Glen, R. C. & Goodman, J. M. Solubility Challenge: Can You Predict Solubilities of 32 Molecules Using a Database of 100 Reliable Measurements? J. Chem. Inf. Model. 48, 12891303 (2008).

Article PubMed Google Scholar

Stuart, M. & Box, K. Chasing Equilibrium: Measuring the Intrinsic Solubility of Weak Acids and Bases. Anal. Chem. 77, 983990 (2005).

Article CAS PubMed Google Scholar

Huuskonen, J., Rantanen, J. & Livingstone, D. Prediction of aqueous solubility for a diverse set of organic compounds based on atom-type electrotopological state indices. Eur. J. Med. Chem. 35, 10811088 (2000).

Article CAS PubMed Google Scholar

Yalkowsky, RM & Dannenfleser, SH. Aquasol database of aqueous solubility. Version 5. https://hero.epa.gov/hero/index.cfm/reference/details/reference_id/5348039 (2009).

Bloch, D. Computer Software Review. Review of PHYSPROP Database (Version 1.0). ACS Publications https://pubs.acs.org/doi/pdf/10.1021/ci00024a602 (2004) https://doi.org/10.1021/ci00024a602.

Dalanay, J. S. ESOL: Estimating Aqueous Solubility Directly from Molecular Structure. J. Chem. Inf. Comput. Sci. 44, 10001005 (2004).

Article Google Scholar

US EPA. EPI Suite. https://www.epa.gov/tsca-screening-tools/epi-suitetm-estimation-program-interface

Wang, J., Hou, T. & Xu, X. Aqueous Solubility Prediction Based on Weighted Atom Type Counts and Solvent Accessible Surface Areas. J. Chem. Inf. Model. 49, 571581 (2009).

Article CAS PubMed Google Scholar

Boobier, S., Hose, D. R. J., Blacker, A. J. & Nguyen, B. N. Machine learning with physicochemical relationships: solubility prediction in organic solvents and water. Nat. Commun. 11, 5753 (2020).

Article CAS PubMed PubMed Central Google Scholar

Tetko, I. V., Tanchuk, V. Y., Kasheva, T. N. & Villa, A. E. P. Estimation of Aqueous Solubility of Chemical Compounds Using E-State Indices. J. Chem. Inf. Comput. Sci. 41, 14881493 (2001).

Article CAS PubMed Google Scholar

Avdeef, A. Prediction of aqueous intrinsic solubility of druglike molecules using Random Forest regression trained with Wiki-pS0 database. ADMET DMPK 8, 29 (2020).

Article PubMed PubMed Central Google Scholar

Sorkun, M. C., Khetan, A. & Er, S. AqSolDB, a curated reference set of aqueous solubility and 2D descriptors for a diverse set of compounds. Sci. Data 6, 143 (2019).

Article PubMed PubMed Central Google Scholar

Sushko, I. et al. Online chemical modeling environment (OCHEM): web platform for data storage, model development and publishing of chemical information. J. Comput. Aided Mol. Des. 25, 533554 (2011).

Article CAS PubMed PubMed Central Google Scholar

Panapitiya, G. et al. Evaluation of Deep Learning Architectures for Aqueous Solubility Prediction. ACS Omega 7, 1569515710 (2022).

Article CAS PubMed PubMed Central Google Scholar

Wiercioch, M. & Kirchmair, J. Dealing with a data-limited regime: Combining transfer learning and transformer attention mechanism to increase aqueous solubility prediction performance. Artif. Intell. Life Sci. 1, 100021 (2021).

CAS Google Scholar

Lowe, C. N. et al. Transparency in Modeling through Careful Application of OECDs QSAR/QSPR Principles via a Curated Water Solubility Data Set. Chem. Res. Toxicol. 36, 465478 (2023).

Article CAS PubMed Google Scholar

Francoeur, P. G. & Koes, D. R. SolTranNet-A Machine Learning Tool for Fast Aqueous Solubility Prediction. J. Chem. Inf. Model. 61, 25302536 (2021).

Article CAS PubMed PubMed Central Google Scholar

Sluga, J., Venko, K., Drgan, V. & Novi, M. QSPR Models for Prediction of Aqueous Solubility: Exploring the Potency of Randi-type Indices. Croat. Chem. Acta 93 (2020).

Meng, J. et al. Boosting the predictive performance with aqueous solubility dataset curation. Sci. Data 9, 71 (2022).

Article CAS PubMed PubMed Central Google Scholar

Lee, S. et al. Novel Solubility Prediction Models: Molecular Fingerprints and Physicochemical Features vs Graph Convolutional Neural Networks. ACS Omega 7, 1226812277 (2022).

Article MathSciNet CAS PubMed PubMed Central Google Scholar

Schrdinger. QikProp. (2015).

United States National Library of Medicine. ChemIDplus advanced. https://pubchem.ncbi.nlm.nih.gov/source/ChemIDplus (2011).

Khne, R., Ebert, R.-U., Kleint, F., Schmidt, G. & Schrmann, G. Group contribution methods to estimate water solubility of organic chemicals. Chemosphere 30, 20612077 (1995).

Article Google Scholar

OECD. eChemPortal: The Global Portal to Information on Chemical Substances, https://www.echemportal.org/echemportal/ (2023).

European Chemicals Agency. ECHA. https://echa.europa.eu/fr/ (2023).

Irmann, F. Eine einfache Korrelation zwischen Wasserlslichkeit und Struktur von Kohlenwasserstoffen und Halogenkohlenwasserstoffen. Chem. Ing. Tech. 37, 789798 (1965).

Article CAS Google Scholar

Hansch, C., Quinlan, J. E. & Lawrence, G. L. Linear free-energy relationship between partition coefficients and the aqueous solubility of organic liquids. J. Org. Chem. 33, 347350 (1968).

Article CAS Google Scholar

Yalkowsky, S. H. & Valvani, S. C. Solubility and partitioning I: Solubility of nonelectrolytes in water. J. Pharm. Sci. 69, 912922 (1980).

Article CAS PubMed Google Scholar

Ran, Y. & Yalkowsky, S. H. Prediction of drug solubility by the general solubility equation (GSE). J. Chem. Inf. Comput. Sci. 41, 354357 (2001).

Article CAS PubMed Google Scholar

Hansen, N. T., Kouskoumvekaki, I., Jrgensen, F. S., Brunak, S. & Jnsdttir, S. . Prediction of pH-Dependent Aqueous Solubility of Druglike Molecules. J. Chem. Inf. Model. 46, 26012609 (2006).

Article CAS PubMed Google Scholar

ChemAxon. Marvin. https://chemaxon.com/products/marvin (2023).

Johnson, S. R., Chen, X.-Q., Murphy, D. & Gudmundsson, O. A Computational Model for the Prediction of Aqueous Solubility That Includes Crystal Packing, Intrinsic Solubility, and Ionization Effects. Mol. Pharm. 4, 513523 (2007).

Article CAS PubMed Google Scholar

Hopfinger, A. J., Esposito, E. X., Llins, A., Glen, R. C. & Goodman, J. M. Findings of the Challenge To Predict Aqueous Solubility. ACS Publications https://pubs.acs.org/doi/pdf/10.1021/ci800436c (2008).

Lusci, A., Pollastri, G. & Baldi, P. Deep architectures and deep learning in chemoinformatics: the prediction of aqueous solubility for drug-like molecules. J. Chem. Inf. Model. 53, 15631575 (2013).

Article CAS PubMed PubMed Central Google Scholar

Huuskonen, J., Livingstone, D. J. & Manallack, D. T. Prediction of drug solubility from molecular structure using a drug-like training set. SAR QSAR Environ. Res. 19, 191212 (2008).

Article CAS PubMed Google Scholar

Zhou, D., Alelyunas, Y. & Liu, R. Scores of Extended Connectivity Fingerprint as Descriptors in QSPR Study of Melting Point and Aqueous Solubility. J. Chem. Inf. Model. 48, 981987 (2008).

Article CAS PubMed Google Scholar

Eri, S., Kalini, M., Popovi, A., Zloh, M. & Kuzmanovski, I. Prediction of aqueous solubility of drug-like molecules using a novel algorithm for automatic adjustment of relative importance of descriptors implemented in counter-propagation artificial neural networks. Int. J. Pharm. 437, 232241 (2012).

Article PubMed Google Scholar

Llinas, A. & Avdeef, A. Solubility Challenge Revisited after Ten Years, with Multilab Shake-Flask Data, Using Tight (SD 0.17log) and Loose (SD 0.62log) Test Sets. J. Chem. Inf. Model. 59, 30363040 (2019).

Article CAS PubMed Google Scholar

Llinas, A., Oprisiu, I. & Avdeef, A. Findings of the Second Challenge to Predict Aqueous Solubility. J. Chem. Inf. Model. 60, 47914803 (2020).

Article CAS PubMed Google Scholar

Hewitt, M. et al. In silico prediction of aqueous solubility: the solubility challenge. J. Chem. Inf. Model. 49, 25722587 (2009).

Article CAS PubMed Google Scholar

Goh, G. B., Hodas, N., Siegel, C. & Vishnu, A. SMILES2vec: Predicting Chemical Properties from Text Representations. Preprint at arXiv:1712.02034 (2018).

Cui, Q. et al. Improved Prediction of Aqueous Solubility of Novel Compounds by Going Deeper With Deep Learning. Front. Oncol. 10 (2020).

Maziarka, . et al. Molecule Attention Transformer. (2020).

Lovri, M. et al. Machine learning in prediction of intrinsic aqueous solubility of drug-like compounds: Generalization, complexity, or predictive ability? J. Chemom. 35, e3349 (2021).

Article Google Scholar

Kohavi, R. & Wolpert, D. H. in International Conference on Machine Learning Bias Plus Variance Decomposition for Zero-One Loss Function (1996).

Follow this link:
Will we ever be able to accurately predict solubility? | Scientific Data - Nature.com

Related Posts

Comments are closed.