You have access to this full article to experience the outstanding content available to SPE members and JPT subscribers.
To ensure continued access to JPT's content, please Sign In, JOIN SPE, or Subscribe to JPT
In this paper, the authors introduce a new technology installed permanently on the well completion and addressed to real-time reservoir fluid mapping through time-lapse electromagnetic tomography during production or injection. The variations of the electromagnetic fields caused by changes of the fluid distribution are measured in a wide range of distances from the well. The data are processed and interpreted through an integrated software platform that combines 3D and 4D geophysical data inversion with a machine-learning (ML) platform. The complete paper clarifies the details of the ML work flow applied to electrical resistivity tomography (ERT) models using an example based on synthetic data.
An important question in well completions is how one may acquire data with sufficient accuracy for detecting the movements of the fluids in a wide range of distances in the space around the production well. One method that is applied in various Earth disciplines is time-lapse electrical resistivity. The operational effectiveness of ERT allows frequent acquisition of independent surveys and inversion of the data in a relatively short time. The final goal is to create dynamic models of the reservoir supporting important decisions in near-real-time regarding production and management operations. ML algorithms can support this decision-making process.
In a time-lapse ERT survey [often referred to as a direct-current (DC) time-lapse survey], electrodes are installed at fixed locations during monitoring. First, a base resistivity data set is collected. The inversion of this initial data set produces a base resistivity model to be used as a reference model. Then, one or more monitor surveys are repeated during monitoring. The same acquisition parameters applied in the base survey must be used for each monitor survey. The objective is to detect any small change in resistivity, from one survey to another, inside the investigated medium.
As a first approach, the eventual variations in resistivity can be retrieved through direct comparison between the different inverted resistivity models. A different approach is called difference inversion. Instead of inverting the base and monitor data sets separately, in difference inversion, the difference between the monitor and base data sets is inverted. In this way, all the coherent inversion artifacts may be canceled in the difference images resulting from this type of inversion.
Repeating the measurements many times (through multiple monitor surveys) in the same area and inverting the differences between consecutive data sets results in deep insight about relevant variations of physical properties linked with variations of the electric resistivity.
The Eni reservoir electromagnetic monitoring and fluid mapping system consists of an array of electrodes and coils (Fig. 1) installed along the production casing/liner. The electrodes are coupled electrically with the geological formations. A typical acquisition layout can include several hundred electrodes densely spaced (for instance, every 510m) and deployed on many wells for long distances along the liner. This type of acquisition configuration allows characterization, after data inversion, of the resistivity space between the wells with relatively high resolution and in a wide range of distances. The electrodes work alternately as sources of electric currents (Electrodes A and B in Fig. 1) and as receivers of electric potentials (Electrodes M and N). The value of the measured electric potentials depends on the resistivity distribution of the medium investigated by the electric currents. Consequently, the inversion of the measured potentials allows retrieval of a multidimensional resistivity model in the space around the electrode array. This model is complementary to the other resistivity model retrieved through ERT tomography. Finally, the resistivity models are transformed into fluid-saturation models to obtain a real-time map of fluid distribution in the reservoir.
The described system includes coils that generate and measure a controlled electromagnetic field in a wide range of frequencies.
The geoelectric method has proved to be an effective approach for mapping fluid variations, using both surface and borehole measurements, because of its high sensitivity to the electrical resistivity changes associated with the different types of fluids (fresh water, brine, hydrocarbons). In the specific test described in the complete paper, the authors simulated a time-lapse DC tomography experiment addressed to hydrocarbon reservoir monitoring during production.
A significant change in conductivity was simulated in the reservoir zone and below it because of the water table approaching four horizontal wells. A DC cross-hole acquisition survey using a borehole layout deployed in four parallel horizontal wells located at a mutual constant distance of 250 m was simulated. Each horizontal well is a constant depth of 2340 m below the surface. In each well, 15 electrodes with a constant spacing of 25 m were deployed.
The modeling grid is formed by irregular rectangular cells with size dependent on the spacing between the electrodes. The maximum expected spatial resolution of the inverted model parameter (resistivity, in this case) corresponds to the minimum half-spacing between the electrodes.
For this simulation, the authors used a PUNQ-S3 reservoir model representing a small industrial reservoir scenario of 19285 gridblocks. A South and East fault system bounds the modeled hydrocarbon field. Furthermore, an aquifer bounds the reservoir to the North and West. The porosity and saturation distributions were transformed into the corresponding resistivity distribution. Simulations were performed on the resulting resistivity model. This model consists of five levels (with a thickness of 10 m each) with variable resistivity.
The acquisition was simulated in both scenarios before and after the movement of waterthat is, corresponding with both the base and the monitor models. A mixed-dipole gradient array, with a cycle time of 1.2 s, was used, acquiring 2,145 electric potentials. This is a variant of the dipole/dipole array with all four electrodes (A, B, M, and N) usually deployed on a straight line.
The authors added 5% of random noise in the synthetic data. Consequently, because of the presence of noisy data, a robust inversion approach more suited to presence of outliers was applied.
After the simulated response was recorded in the two scenarios (base and monitor models), the difference data vector was created and inverted for retrieving the difference conductivity model (that is, the 3D model of the spatial variations of the conductivity distribution). One of the main benefits of DC tomography is the rapidity by which data can be acquired and inverted. This intrinsic methodological effectiveness allows acquisition of several surveys per day in multiple wells, permitting a quasi-real-time reservoir-monitoring approach.
Good convergence is reached after only five iterations, although the experiment started from a uniform resistivity initial model, assuming null prior knowledge.
In another test, the DC response measured in two different scenarios was studied. A single-well acquisition scheme was considered, including both a vertical and a horizontal segment. The installation of electrodes in both parts was simulated, with an average spacing of 10 m. A water table approaching the well from below was simulated, with the effect of changing the resistivity distribution significantly. The synthetic response was inverted at both stages of the water movement. After each inversion, the water table was interpreted in terms of absolute changes of resistivity.
The technology is aimed at performing real-time reservoir fluid mapping through time-lapse electric/electromagnetic tomography. To estimate the resolution capability of the approach and its theoretical range of investigation, a full sensitivity analysis was performed through 3D forward modeling and time-lapse 3D inversion of synthetic data simulated in realistic production scenarios. The approach works optimally when sources and receivers are installed in multiple wells. Time-lapse ERT tests show that significant conductivity variations caused by waterfront movements up to 100150 m from the borehole electrode layouts can be detected. Time-lapse ERT models were integrated into a complete framework aimed at analyzing the continuous information acquired at each ERT survey. Using a suite of ML algorithms, a quasi-real-time space/time prediction about the probabilistic distributions of invasion of undesired fluids into the production wells can be made.
Read more from the original source:
Well-Completion System Supported by Machine Learning Maximizes Asset Value - Journal of Petroleum Technology
- What Is Machine Learning? | How It Works, Techniques ... [Last Updated On: September 5th, 2019] [Originally Added On: September 5th, 2019]
- Start Here with Machine Learning [Last Updated On: September 22nd, 2019] [Originally Added On: September 22nd, 2019]
- What is Machine Learning? | Emerj [Last Updated On: October 1st, 2019] [Originally Added On: October 1st, 2019]
- Microsoft Azure Machine Learning Studio [Last Updated On: October 1st, 2019] [Originally Added On: October 1st, 2019]
- Machine Learning Basics | What Is Machine Learning? | Introduction To Machine Learning | Simplilearn [Last Updated On: October 1st, 2019] [Originally Added On: October 1st, 2019]
- What is Machine Learning? A definition - Expert System [Last Updated On: October 2nd, 2019] [Originally Added On: October 2nd, 2019]
- Machine Learning | Stanford Online [Last Updated On: October 2nd, 2019] [Originally Added On: October 2nd, 2019]
- How to Learn Machine Learning, The Self-Starter Way [Last Updated On: October 17th, 2019] [Originally Added On: October 17th, 2019]
- definition - What is machine learning? - Stack Overflow [Last Updated On: November 3rd, 2019] [Originally Added On: November 3rd, 2019]
- Artificial Intelligence vs. Machine Learning vs. Deep ... [Last Updated On: November 3rd, 2019] [Originally Added On: November 3rd, 2019]
- Machine Learning in R for beginners (article) - DataCamp [Last Updated On: November 3rd, 2019] [Originally Added On: November 3rd, 2019]
- Machine Learning | Udacity [Last Updated On: November 3rd, 2019] [Originally Added On: November 3rd, 2019]
- Machine Learning Artificial Intelligence | McAfee [Last Updated On: November 3rd, 2019] [Originally Added On: November 3rd, 2019]
- Machine Learning [Last Updated On: November 3rd, 2019] [Originally Added On: November 3rd, 2019]
- AI-based ML algorithms could increase detection of undiagnosed AF - Cardiac Rhythm News [Last Updated On: November 19th, 2019] [Originally Added On: November 19th, 2019]
- The Cerebras CS-1 computes deep learning AI problems by being bigger, bigger, and bigger than any other chip - TechCrunch [Last Updated On: November 19th, 2019] [Originally Added On: November 19th, 2019]
- Can the planet really afford the exorbitant power demands of machine learning? - The Guardian [Last Updated On: November 19th, 2019] [Originally Added On: November 19th, 2019]
- New InfiniteIO Platform Reduces Latency and Accelerates Performance for Machine Learning, AI and Analytics - Business Wire [Last Updated On: November 19th, 2019] [Originally Added On: November 19th, 2019]
- How to Use Machine Learning to Drive Real Value - eWeek [Last Updated On: November 19th, 2019] [Originally Added On: November 19th, 2019]
- Machine Learning As A Service Market to Soar from End-use Industries and Push Revenues in the 2025 - Downey Magazine [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Rad AI Raises $4M to Automate Repetitive Tasks for Radiologists Through Machine Learning - - HIT Consultant [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Machine Learning Improves Performance of the Advanced Light Source - Machine Design [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Synthetic Data: The Diamonds of Machine Learning - TDWI [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- The transformation of healthcare with AI and machine learning - ITProPortal [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Workday talks machine learning and the future of human capital management - ZDNet [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Machine Learning with R, Third Edition - Free Sample Chapters - Neowin [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Verification In The Era Of Autonomous Driving, Artificial Intelligence And Machine Learning - SemiEngineering [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Podcast: How artificial intelligence, machine learning can help us realize the value of all that genetic data we're collecting - Genetic Literacy... [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- The Real Reason Your School Avoids Machine Learning - The Tech Edvocate [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- Siri, Tell Fido To Stop Barking: What's Machine Learning, And What's The Future Of It? - 90.5 WESA [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- Microsoft reveals how it caught mutating Monero mining malware with machine learning - The Next Web [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- The role of machine learning in IT service management - ITProPortal [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- Global Director of Tech Exploration Discusses Artificial Intelligence and Machine Learning at Anheuser-Busch InBev - Seton Hall University News &... [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- The 10 Hottest AI And Machine Learning Startups Of 2019 - CRN: The Biggest Tech News For Partners And The IT Channel [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- Startup jobs of the week: Marketing Communications Specialist, Oracle Architect, Machine Learning Scientist - BetaKit [Last Updated On: November 30th, 2019] [Originally Added On: November 30th, 2019]
- Here's why machine learning is critical to success for banks of the future - Tech Wire Asia [Last Updated On: December 2nd, 2019] [Originally Added On: December 2nd, 2019]
- 3 questions to ask before investing in machine learning for pop health - Healthcare IT News [Last Updated On: December 8th, 2019] [Originally Added On: December 8th, 2019]
- Machine Learning Answers: If Caterpillar Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 8th, 2019] [Originally Added On: December 8th, 2019]
- Measuring Employee Engagement with A.I. and Machine Learning - Dice Insights [Last Updated On: December 8th, 2019] [Originally Added On: December 8th, 2019]
- Amazon Wants to Teach You Machine Learning Through Music? - Dice Insights [Last Updated On: December 8th, 2019] [Originally Added On: December 8th, 2019]
- Machine Learning Answers: If Nvidia Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 8th, 2019] [Originally Added On: December 8th, 2019]
- AI and machine learning platforms will start to challenge conventional thinking - CRN.in [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Machine Learning Answers: If Twitter Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Machine Learning Answers: If Seagate Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Machine Learning Answers: If BlackBerry Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Amazon Releases A New Tool To Improve Machine Learning Processes - Forbes [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Another free web course to gain machine-learning skills (thanks, Finland), NIST probes 'racist' face-recog and more - The Register [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Kubernetes and containers are the perfect fit for machine learning - JAXenter [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- TinyML as a Service and machine learning at the edge - Ericsson [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- AI and machine learning products - Cloud AI | Google Cloud [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Machine Learning | Blog | Microsoft Azure [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Machine Learning in 2019 Was About Balancing Privacy and Progress - ITPro Today [Last Updated On: December 25th, 2019] [Originally Added On: December 25th, 2019]
- CMSWire's Top 10 AI and Machine Learning Articles of 2019 - CMSWire [Last Updated On: December 25th, 2019] [Originally Added On: December 25th, 2019]
- Here's why digital marketing is as lucrative a career as data science and machine learning - Business Insider India [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- Dell's Latitude 9510 shakes up corporate laptops with 5G, machine learning, and thin bezels - PCWorld [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- Finally, a good use for AI: Machine-learning tool guesstimates how well your code will run on a CPU core - The Register [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- Cloud as the enabler of AI's competitive advantage - Finextra [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- Forget Machine Learning, Constraint Solvers are What the Enterprise Needs - - RTInsights [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- Informed decisions through machine learning will keep it afloat & going - Sea News [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- The Problem with Hiring Algorithms - Machine Learning Times - machine learning & data science news - The Predictive Analytics Times [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- New Program Supports Machine Learning in the Chemical Sciences and Engineering - Newswise [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- AI-System Flags the Under-Vaccinated in Israel - PrecisionVaccinations [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- New Contest: Train All The Things - Hackaday [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- AFTAs 2019: Best New Technology Introduced Over the Last 12 MonthsAI, Machine Learning and AnalyticsActiveViam - www.waterstechnology.com [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Educate Yourself on Machine Learning at this Las Vegas Event - Small Business Trends [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Seton Hall Announces New Courses in Text Mining and Machine Learning - Seton Hall University News & Events [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Looking at the most significant benefits of machine learning for software testing - The Burn-In [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Leveraging AI and Machine Learning to Advance Interoperability in Healthcare - - HIT Consultant [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Adventures With Artificial Intelligence and Machine Learning - Toolbox [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Five Reasons to Go to Machine Learning Week 2020 - Machine Learning Times - machine learning & data science news - The Predictive Analytics Times [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Uncover the Possibilities of AI and Machine Learning With This Bundle - Interesting Engineering [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Learning that Targets Millennial and Generation Z - HR Exchange Network [Last Updated On: January 23rd, 2020] [Originally Added On: January 23rd, 2020]
- Red Hat Survey Shows Hybrid Cloud, AI and Machine Learning are the Focus of Enterprises - Computer Business Review [Last Updated On: January 23rd, 2020] [Originally Added On: January 23rd, 2020]
- Vectorspace AI Datasets are Now Available to Power Machine Learning (ML) and Artificial Intelligence (AI) Systems in Collaboration with Elastic -... [Last Updated On: January 23rd, 2020] [Originally Added On: January 23rd, 2020]
- What is Machine Learning? | Types of Machine Learning ... [Last Updated On: January 23rd, 2020] [Originally Added On: January 23rd, 2020]
- How Machine Learning Will Lead to Better Maps - Popular Mechanics [Last Updated On: January 30th, 2020] [Originally Added On: January 30th, 2020]
- Jenkins Creator Launches Startup To Speed Software Testing with Machine Learning -- ADTmag - ADT Magazine [Last Updated On: January 30th, 2020] [Originally Added On: January 30th, 2020]
- An Open Source Alternative to AWS SageMaker - Datanami [Last Updated On: January 30th, 2020] [Originally Added On: January 30th, 2020]
- Machine Learning Could Aid Diagnosis of Barrett's Esophagus, Avoid Invasive Testing - Medical Bag [Last Updated On: January 30th, 2020] [Originally Added On: January 30th, 2020]
- OReilly and Formulatedby Unveil the Smart Cities & Mobility Ecosystems Conference - Yahoo Finance [Last Updated On: January 30th, 2020] [Originally Added On: January 30th, 2020]