Transfer learned deep feature based crack detection using support vector machine: a comparative study | Scientific … – Nature.com

Yi, Y., Zhu, D., Guo, S., Zhang, Z. & Shi, C. A review on the deterioration and approaches to enhance the durability of concrete in the marine environment. Cement Concr. Compos. 113, 103695 (2020).

Article CAS Google Scholar

Ham, Y., Han, K. K., Lin, J. J. & Golparvar-Fard, M. Visual monitoring of civil infrastructure systems via camera-equipped unmanned aerial vehicles (UAVs): A review of related works. Vis. Eng. 4(1), 18 (2016).

Article Google Scholar

Sharma, K. V. et al. Prognostic modeling of polydisperse SiO2/Aqueous glycerol nanofluids thermophysical profile using an explainable artificial intelligence (XAI) approach. Eng. Appl. Artif. Intell. 126, 106967 (2023).

Article Google Scholar

Kanti, P. K. et al. Thermophysical profile of graphene oxide and MXene hybrid nanofluids for sustainable energy applications: Model prediction with a Bayesian optimized neural network with K-cross fold validation. FlatChem 39, 100501 (2023).

Article CAS Google Scholar

Kanti, P. et al. Properties of water-based fly ash-copper hybrid nanofluid for solar energy applications: Application of RBF model. Sol. Energy Mater. Sol. Cells 234, 111423 (2022).

Article CAS Google Scholar

Kanti, P. K. et al. The stability and thermophysical properties of Al2O3-graphene oxide hybrid nanofluids for solar energy applications: application of robust autoregressive modern machine learning technique. Sol. Energy Mater. Sol. Cells 253, 112207 (2023).

Article CAS Google Scholar

Hsieh, Y. A. & Tsai, Y. J. Machine learning for crack detection: Review and model performance comparison. J. Comput. Civ. Eng. 34(5), 04020038 (2020).

Article Google Scholar

Munawar, H. S., Hammad, A. W. A., Haddad, A., Soares, C. A. P. & Waller, S. T. Image-based crack detection methods: A review. Infrastructures 6, 115. https://doi.org/10.3390/infrastructures6080115 (2021).

Article Google Scholar

Dorafshan, S., Thomas, R. J. & Maguire, M. Sdnet 2018: An annotated image dataset for non-contact concrete crack detection using deep convolutional neural networks. Data Brief 21, 16641668 (2018).

Article PubMed PubMed Central Google Scholar

C aglar, F., O zgenel, R.: Concrete crack images for classification. Mendeley Data 2 (2019)

Xu, H. et al. Automatic bridge crack detection using a convolutional neural network. Appl. Sci. 9(14), 2867 (2019).

Article Google Scholar

Harinath Reddy, C., Mini, K., Radhika, N.: Structural health monitor- ingan integrated approach for vibration analysis with wireless sensors to steel structure using image processing. In: International Conference on ISMAC in Computational Vision and Bio-Engineering, pp. 15951610 (2018). Springer

Pauly, L., Hogg, D., Fuentes, R., Peel, H.: Deeper networks for pavement crack detection. In: Proceedings of the 34th ISARC, pp. 479485 (2017). IAARC

Lins, R. G. & Givigi, S. N. Automatic crack detection and measurement based on image analysis. IEEE Trans. Instrum. Meas. 65(3), 583590. https://doi.org/10.1109/TIM.2015.2509278 (2016).

Article Google Scholar

Shahrokhinasab, E., Hosseinzadeh, N., Monirabbasi, A. & Torkaman, S. Performance of image-based crack detection systems in concrete structures. J. Soft Comput. Civ. Eng. 4(1), 127139 (2020).

Google Scholar

Munawar, H. S., Hammad, A. W., Haddad, A., Soares, C. A. P. & Waller, S. T. Image-based crack detection methods: A review. Infrastructures 6(8), 115 (2021).

Article Google Scholar

Zou, Q., Cao, Y., Li, Q., Mao, Q. & Wang, S. Cracktree: Automatic crack detection from pavement images. Pattern Recognit. Lett. 33(3), 227238 (2012).

Article Google Scholar

Salman, M., Mathavan, S., Kamal, K. & Rahman, M. Pavement crack detection using the Gabor filter. In 16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013) (eds Salman, M. et al.) 20392044 (IEEE, 2013).

Chapter Google Scholar

Niu, B., Wu, H. & Meng, Y. Application of cem algorithm in the field of tunnel crack identification. In 2020 IEEE 5th International Conference on Image, Vision and Computing (ICIVC) (eds Niu, B. et al.) 232236 (IEEE, 2020).

Chapter Google Scholar

Chhabra, G. et al. Human emotions recognition, analysis and transformation by the bioenergy field in smart grid using image processing. Electronics 11, 4059. https://doi.org/10.3390/electronics11234059 (2022).

Article Google Scholar

Baltazart, V., Nicolle, P. & Yang, L. Ongoing tests and improvements of the mps algorithm for the automatic crack detection within grey level pavement images. In 2017 25th European Signal Processing Conference (EUSIPCO) (eds Baltazart, V. et al.) 20162020 (IEEE, 2017).

Chapter Google Scholar

Jo, J. & Jadidi, Z. A high precision crack classification system using multi-layered image processing and deep belief learning. Struct. Infrastruct. Eng. 16(2), 297305 (2020).

Article Google Scholar

Landstrom, A. & Thurley, M. J. Morphology-based crack detection for steel slabs. IEEE J. Sel. Top. Signal Process. 6(7), 866875 (2012).

Article Google Scholar

Prasanna, P. et al. Automated crack detection on concrete bridges. IEEE Trans. Autom. Sci. Eng. 13(2), 591599 (2014).

Article Google Scholar

Lin, M., Zhou, R., Yan, Q. & Xu, X. Automatic pavement crack detection using hmrf-em algorithm. In 2019 International Conference on Computer, Information and Telecommunication Systems (CITS) (eds Lin, M. et al.) 15 (IEEE, 2019).

Google Scholar

Pratico, F. G., Fedele, R., Naumov, V. & Sauer, T. Detection and monitoring of bottom-up cracks in road pavement using a machine-learning approach. Algorithms 13(4), 81 (2020).

Article Google Scholar

Zhang, F. et al. A new identification method for surface cracks from uav images based on machine learning in coal mining areas. Remote Sens. 12(10), 1571 (2020).

Article Google Scholar

Zhang, L. et al. Machine learning-based real-time visible fatigue crack growth detection. Digit. Commun. Netw. 7(4), 551558 (2021).

Article Google Scholar

Dharneeshkar, J. et al. Deep learning based detection of potholes in indian roads using yolo. In 2020 International Conference on Inventive Computation Technologies (ICICT) (eds Dharneeshkar, J. et al.) 381385 (IEEE, 2020).

Google Scholar

Li, H., Zong, J., Nie, J., Wu, Z. & Han, H. Pavement crack detection algorithm based on densely connected and deeply supervised network. IEEE Access 9, 1183511842 (2021).

Article Google Scholar

Zhang, L., Yang, F., Zhang, Y. D. & Zhu, Y. J. Road crack detection using deep convolutional neural network. In 2016 IEEE International Conference on Image Processing (ICIP) (eds Zhang, L. et al.) 37083712 (IEEE, 2016).

Chapter Google Scholar

Meng, X. Concrete crack detection algorithm based on deep residual neural networks. Sci. Program. 2021, 17 (2021).

CAS Google Scholar

Su, C. & Wang, W. Concrete cracks detection using convolutional neural- network based on transfer learning. Math. Problems Eng. 2020, 110 (2020).

Google Scholar

Ye, X.-W., Jin, T. & Chen, P.-Y. Structural crack detection using deep learningbased fully convolutional networks. Adv. Struct. Eng. 22(16), 34123419 (2019).

Article Google Scholar

Feng, C. et al. Structural damage detection using deep convolutional neural network and transfer learning. KSCE J. Civ. Eng. 23(10), 44934502 (2019).

Article Google Scholar

Kim, C. N., Kawamura, K., Nakamura, H. & Tarighat, A. Automatic crack detection for concrete infrastructures using image processing and deep learning. In IOP Conference Series: Materials Science and Engineering Vol. 829 (eds Kim, C. N. et al.) 012027 (IOP Publishing, 2020).

Google Scholar

Cao, M.-T., Tran, Q.-V., Nguyen, N.-M. & Chang, K.-T. Survey on performance of deep learning models for detecting road damages using multiple dashcam image resources. Adv. Eng. Inform. 46, 101182 (2020).

Article Google Scholar

Nguyen, N. H. T., Perry, S., Bone, D., Le, H. T. & Nguyen, T. T. Two-stage convolutional neural network for road crack detection and segmentation. Expert Syst. Appl. 186, 115718 (2021).

Article Google Scholar

Park, S. E., Eem, S.-H. & Jeon, H. Concrete crack detection and quantifica- tion using deep learning and structured light. Constr. Build. Mater. 252, 119096 (2020).

Article Google Scholar

Huyan, J., Li, W., Tighe, S., Xu, Z. & Zhai, J. Cracku-net: A novel deep convolutional neural network for pixelwise pavement crack detection. Struct. Control Health Monit. 27(8), 2551 (2020).

Article Google Scholar

Kim, B., Yuvaraj, N., Sri Preethaa, K. & Arun Pandian, R. Surface crack detection using deep learning with shallow cnn architecture for enhanced computation. Neural Computing Appl. 33(15), 92899305 (2021).

Article Google Scholar

GI, K.F.: A hierarchical neural network capable of visual pattern recognition. Neural Network 1 (1989).

Russakovsky, O. et al. Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211252 (2015).

Article MathSciNet Google Scholar

LeCun, Y. et al. Handwritten digit recognition with a back-propagation network. Adv. Neural Inf. Process. Syst. 2, 396404 (1989).

Google Scholar

Arel, I., Rose, D. C. & Karnowski, T. P. Deep machine learning-a new frontier in artificial intelligence research [research frontier]. IEEE comput. Intel. Mag. 5(4), 1318 (2010).

Article Google Scholar

Simonyan, K., Zisserman, A.: Very deep convolutional networks for large- scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

Chollet, F.: Xception: Deep learning with depthwise separable convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 12511258 (2017).

He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770778 (2016).

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 28182826 (2016).

Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A.: Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-first AAAI Conference on Artificial Intelligence (2017).

Andrew, G. et al. Efficient convolutional neural networks for mobile vision applications. Mobilenets. Available: http://arxiv.org/abs/1704.04861 (2017).

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.-C.: Mobilenetv2: Inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 45104520 (2018).

Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 47004708 (2017).

Tan, M. & Le, Q. Efficient Net: Rethinking model scaling for convolutional neural networks. In International Conference on Machine Learning (eds Tan, M. & Le, Q.) 61056114 (PMLR, 2019).

Google Scholar

Sikha, O. & Bharath, B. Vgg16-random fourier hybrid model for masked face recognition. Soft Comput. 26, 116 (2022).

Article Google Scholar

Srihari, K. & Sikha, O. Partially supervised image captioning model for urban road views. In Intelligent Data Communication Technologies and Internet of Things (eds Srihari, K. & Sikha, O.) 5973 (Springer, 2022).

Chapter Google Scholar

Originally posted here:
Transfer learned deep feature based crack detection using support vector machine: a comparative study | Scientific ... - Nature.com

Related Posts

Comments are closed.