Synthetic Lagrangian turbulence by generative diffusion models – Nature.com

Shraiman, I. B. & D. Siggia, D. E. Scalar turbulence. Nature 405, 639646 (2000).

Article Google Scholar

La Porta, A., Voth, G. A., Crawford, A. M., Alexander, J. & Bodenschatz, E. Fluid particle accelerations in fully developed turbulence. Nature 409, 10171019 (2001).

Article Google Scholar

Mordant, N., Metz, P., Michel, O. & Pinton, J.-F. Measurement of lagrangian velocity in fully developed turbulence. Phys. Rev. Lett. 87, 214501 (2001).

Article Google Scholar

Falkovich, G., Gawdzki, K. & Vergassola, M. Particles and fields in fluid turbulence. Rev. Mod. Phys. 73, 913975 (2001).

Article MathSciNet Google Scholar

Yeung, P. Lagrangian investigations of turbulence. Annu. Rev. Fluid Mech. 34, 115142 (2002).

Article MathSciNet Google Scholar

Pomeau, Y. The long and winding road. Nat. Phys. 12, 198199 (2016).

Article Google Scholar

Falkovich, G. & Sreenivasan, K. R. Lessons from hydrodynamic turbulence. Phys. Today 59, 43 (2006).

Article Google Scholar

Toschi, F. & Bodenschatz, E. Lagrangian properties of particles in turbulence. Annu. Rev. fluid Mech. 41, 375404 (2009).

Article MathSciNet Google Scholar

Shaw, R. A. Particle-turbulence interactions in atmospheric clouds. Annu. Rev. Fluid Mech. 35, 183227 (2003).

Article Google Scholar

McKee, C. F. & Stone, J. M. Turbulence in the heavens. Nat. Astron. 5, 342343 (2021).

Article Google Scholar

Bentkamp, L., Lalescu, C. C. & Wilczek, M. Persistent accelerations disentangle lagrangian turbulence. Nat. Commun. 10, 3550 (2019).

Article Google Scholar

Sawford, B. L. & Pinton, J.-F. in Ten Chapters in Turbulance (eds. Davidson, P. A., Kaneda, Y. & Sreenivasan, K. R.) 132175 (Cambridge Univ. Press, 2013).

Xia, H., Francois, N., Punzmann, H. & Shats, M. Lagrangian scale of particle dispersion in turbulence. Nat. Commun. 4, 2013 (2013).

Article Google Scholar

Barenghi, C. F., Skrbek, L. & Sreenivasan, K. R. Introduction to quantum turbulence. Proc. Natl Acad. Sci. USA 111, 46474652 (2014).

Article MathSciNet Google Scholar

Xu, H. et al. Flightcrash events in turbulence. Proc. Natl Acad. Sci. USA 111, 75587563 (2014).

Article Google Scholar

Laussy, F. P. Shining light on turbulence. Nat. Photonics 17, 381382 (2023).

Article Google Scholar

Frisch, U.Turbulence: The Legacy of AN Kolmogorov (Cambridge Univ. Press, 1995).

Sawford, B. L. Reynolds number effects in Lagrangian stochastic models of turbulent dispersion. Phys. Fluids A 3, 15771586 (1991).

Article Google Scholar

Pope, S. B. Simple models of turbulent flows. Phys. Fluids 23, 011301 (2011).

Article Google Scholar

Viggiano, B. et al. Modelling lagrangian velocity and acceleration in turbulent flows as infinitely differentiable stochastic processes. J. Fluid Mech. 900, A27 (2020).

Article MathSciNet Google Scholar

Lamorgese, A., Pope, S. B., Yeung, P. & Sawford, B. L. A conditionally cubic-gaussian stochastic lagrangian model for acceleration in isotropic turbulence. J. Fluid Mech. 582, 423448 (2007).

Article MathSciNet Google Scholar

Minier, J.-P., Chibbaro, S. & Pope, S. B. Guidelines for the formulation of lagrangian stochastic models for particle simulations of single-phase and dispersed two-phase turbulent flows. Phys. Fluids 26, 113303 (2014).

Article Google Scholar

Wilson, J. D. & Sawford, B. L. Review of lagrangian stochastic models for trajectories in the turbulent atmosphere. Bound.-Layer. Meteorol. 78, 191210 (1996).

Article Google Scholar

Bourlioux, A., Majda, A. & Volkov, O. Conditional statistics for a passive scalar with a mean gradient and intermittency. Phys. Fluids https://doi.org/10.1063/1.2353880 (2006).

Majda, A. J. & Gershgorin, B. Elementary models for turbulent diffusion with complex physical features: eddy diffusivity, spectrum and intermittency. Philos. Trans. R. Soc. A 371, 20120184 (2013).

Article MathSciNet Google Scholar

Biferale, L., Boffetta, G., Celani, A., Crisanti, A. & Vulpiani, A. Mimicking a turbulent signal: sequential multiaffine processes. Phys. Rev. E 57, R6261 (1998).

Article Google Scholar

Arneodo, A., Bacry, E. & Muzy, J.-F. Random cascades on wavelet dyadic trees. J. Math. Phys. 39, 41424164 (1998).

Article MathSciNet Google Scholar

Bacry, E. & Muzy, J. F. Log-infinitely divisible multifractal processes. Commun. Math. Phys. 236, 449475 (2003).

Article MathSciNet Google Scholar

Chevillard, L. et al. On a skewed and multifractal unidimensional random field, as a probabilistic representation of Kolmogorovs views on turbulence. Ann. Henri Poincar 20, 36933741 (2019).

Article MathSciNet Google Scholar

Sinhuber, M., Friedrich, J., Grauer, R. & Wilczek, M. Multi-level stochastic refinement for complex time series and fields: a data-driven approach. N. J. Phys. 23, 063063 (2021).

Article MathSciNet Google Scholar

Lbke, J., Friedrich, J. & Grauer, R. Stochastic interpolation of sparsely sampled time series by a superstatistical random process and its synthesis in fourier and wavelet space. J. Phys.: Complex. 4, 015005 (2022).

Google Scholar

Zamansky, R. Acceleration scaling and stochastic dynamics of a fluid particle in turbulence. Phys. Rev. Fluids 7, 084608 (2022).

Article Google Scholar

Arnodo, A. et al. Universal intermittent properties of particle trajectories in highly turbulent flows. Phys. Rev. Lett. 100, 254504 (2008).

Article Google Scholar

Kingma, D. P. & Welling, M. Auto-Encoding Variational Bayes. In 2nd International Conference on Learning Representations: Conference Track Proceedings (ICLR, 2014); https://doi.org/10.48550/arXiv.1312.6114

Goodfellow, I. et al. Generative adversarial nets. Adv. Neural Infor. Process. Syst. 27, 26722680 (2014).

Google Scholar

Ho, J., Jain, A. & Abbeel, P. Denoising diffusion probabilistic models. Adv. Neural Inf. Process. Syst. 33, 68406851 (2020).

Google Scholar

Dhariwal, P. & Nichol, A. Diffusion models beat gans on image synthesis. Adv. Neural Inf. Process. Syst. 34, 87808794 (2021).

Google Scholar

van den Oord, A. et al. WaveNet: a generative model for raw audio. Preprint at https://doi.org/10.48550/arXiv.1609.03499 (2016).

Brown, T. et al. Language models are few-shot learners. Adv. Neural Inf. Process. Syst. 33, 18771901 (2020).

Google Scholar

Chen, R. J., Lu, M. Y., Chen, T. Y., Williamson, D. F. & Mahmood, F. Synthetic data in machine learning for medicine and healthcare. Nat. Biomed. Eng. 5, 493497 (2021).

Article Google Scholar

Duraisamy, K., Iaccarino, G. & Xiao, H. Turbulence modeling in the age of data. Annu. Rev. Fluid Mech. 51, 357377 (2019).

Article MathSciNet Google Scholar

Brunton, S. L., Noack, B. R. & Koumoutsakos, P. Machine learning for fluid mechanics. Annu. Rev. Fluid Mech. 52, 477508 (2020).

Article MathSciNet Google Scholar

Vlachas, P. R., Byeon, W., Wan, Z. Y., Sapsis, T. P. & Koumoutsakos, P. Data-driven forecasting of high-dimensional chaotic systems with long short-term memory networks. Proc. R. Soc. A 474, 20170844 (2018).

Article MathSciNet Google Scholar

Pathak, J., Hunt, B., Girvan, M., Lu, Z. & Ott, E. Model-free prediction of large spatiotemporally chaotic systems from data: A reservoir computing approach. Phys. Rev. Lett. 120, 024102 (2018).

Article Google Scholar

Mohan, A. T., Tretiak, D., Chertkov, M. & Livescu, D. Spatio-temporal deep learning models of 3d turbulence with physics informed diagnostics. J. Turbul. 21, 484524 (2020).

Article MathSciNet Google Scholar

Kim, J. & Lee, C. Deep unsupervised learning of turbulence for inflow generation at various reynolds numbers. J. Comput. Phys. 406, 109216 (2020).

Article MathSciNet Google Scholar

Guastoni, L. et al. Convolutional-network models to predict wall-bounded turbulence from wall quantities. J. Fluid Mech. 928, A27 (2021).

Article MathSciNet Google Scholar

Buzzicotti, M., Bonaccorso, F., Di Leoni, P. C. & Biferale, L. Reconstruction of turbulent data with deep generative models for semantic inpainting from turb-rot database. Phys. Rev. Fluids 6, 050503 (2021).

Article Google Scholar

Yousif, M. Z., Yu, L., Hoyas, S., Vinuesa, R. & Lim, H. A deep-learning approach for reconstructing 3d turbulent flows from 2d observation data. Sci. Rep. 13, 2529 (2023).

Article Google Scholar

Shu, D., Li, Z. & Farimani, A. B. A physics-informed diffusion model for high-fidelity flow field reconstruction. J. Comput. Phys. 478, 111972 (2023).

Article MathSciNet Google Scholar

Buzzicotti, M. Data reconstruction for complex flows using AI: recent progress, obstacles, and perspectives. Europhys. Lett. 142, 23001 (2023).

Article Google Scholar

Granero-Belinchon, C. Neural network based generation of a 1-dimensional stochastic field with turbulent velocity statistics. Phys. D 458, 133997 (2024).

Article MathSciNet Google Scholar

Nichol, A. Q. & Dhariwal, P. Improved denoising diffusion probabilistic models. In International Conference on Machine Learning (eds. Meila, M. et al.) 81628171 (PMLR, 2021).

The rest is here:
Synthetic Lagrangian turbulence by generative diffusion models - Nature.com

Related Posts

Comments are closed.