Sea-surface pCO2 maps for the Bay of Bengal based on advanced machine learning algorithms | Scientific Data – Nature.com

Friedlingstein, P. et al. Global carbon budget 2020. Earth System Science Data 12, 32693340 (2020).

Article ADS Google Scholar

Friedlingstein, P. et al. Global carbon budget 2021. Earth System Science Data Discussions 1191 (2021).

Friedlingstein, P. et al. Global carbon budget 2022. Earth System Science Data Discussions 2022, 1159 (2022).

Google Scholar

Chen, C.-T. et al. Airsea exchanges of CO2 in the worlds coastal seas. Biogeosciences 10, 65096544 (2013).

Article ADS CAS Google Scholar

Laruelle, G. G., Lauerwald, R., Pfeil, B. & Regnier, P. Regionalized global budget of the CO2 exchange at the air-water interface in continental shelf seas. Global biogeochemical cycles 28, 11991214 (2014).

Article ADS CAS Google Scholar

Laruelle, G. G. et al. Continental shelves as a variable but increasing global sink for atmospheric carbon dioxide. Nature communications 9, 454 (2018).

Article ADS PubMed PubMed Central Google Scholar

Dai, M. et al. Why are some marginal seas sources of atmospheric CO2? Geophysical Research Letters 40, 21542158 (2013).

Article ADS CAS Google Scholar

Zhai, W.-D. et al. Seasonal variations of the seaair CO2 fluxes in the largest tropical marginal sea (South China sea) based on multiple-year underway measurements. Biogeosciences 10, 77757791 (2013).

Article ADS Google Scholar

Li, Q., Guo, X., Zhai, W., Xu, Y. & Dai, M. Partial pressure of CO2 and air-sea CO2 fluxes in the South China sea: Synthesis of an 18-year dataset. Progress in Oceanography 182, 102272 (2020).

Article Google Scholar

Borges, A. V. Do we have enough pieces of the jigsaw to integrate CO2 fluxes in the coastal ocean? Estuaries 28, 327 (2005).

Article CAS Google Scholar

Anderson, T. R. Plankton functional type modelling: running before we can walk? Journal of Plankton Research 27, 10731081 (2005).

Article Google Scholar

Anderson, T. R. Progress in marine ecosystem modelling and the unreasonable effectiveness of mathematics. Journal of Marine Systems 81, 411 (2010).

Article ADS Google Scholar

Sarma, V., Krishna, M. & Srinivas, T. Sources of organic matter and tracing of nutrient pollution in the coastal Bay of Bengal. Marine Pollution Bulletin 159, 111477 (2020).

Article CAS PubMed Google Scholar

Sarma, V., Prasad, M. & Dalabehera, H. Influence of phytoplankton pigment composition and primary production on pCO2 levels in the Indian ocean. Journal of Earth System Science 130, 116 (2021).

Article Google Scholar

Joshi, A., Chowdhury, R. R., Warrior, H. & Kumar, V. Influence of the freshwater plume dynamics and the barrier layer thickness on the CO2 source and sink characteristics of the Bay of Bengal. Marine Chemistry 236, 104030 (2021).

Article CAS Google Scholar

Sarma, V. et al. East India coastal current controls the Dissolved Inorganic Carbon in the coastal Bay of Bengal. Marine Chemistry 205, 3747 (2018).

Article ADS CAS Google Scholar

Joshi, A., Roychowdhury, R., Kumar, V. & Warrior, H. Configuration and skill assessment of the coupled biogeochemical model for the carbonate system in the Bay of Bengal. Marine Chemistry 103871 (2020).

Joshi, A. & Warrior, H. Comprehending the role of different mechanisms and drivers affecting the sea-surface pCO2 and the air-sea CO2 fluxes in the Bay of Bengal: A modelling study. Marine Chemistry 243, 104120 (2022).

Article CAS Google Scholar

Chakraborty, K., Valsala, V., Bhattacharya, T. & Ghosh, J. Seasonal cycle of surface ocean pCO2 and pH in the northern Indian ocean and their controlling factors. Progress in Oceanography 198, 102683 (2021).

Article Google Scholar

Chakraborty, K., Valsala, V., Gupta, G. & Sarma, V. Dominant biological control over upwelling on pCO2 in sea east of sri lanka. Journal of Geophysical Research: Biogeosciences 123, 32503261 (2018).

Article ADS CAS Google Scholar

Sutton, A. J. et al. A high-frequency atmospheric and seawater pCO2 data set from 14 open-ocean sites using a moored autonomous system. Earth System Science Data 6, 353366 (2014).

Article ADS Google Scholar

Bakker, D. C. et al. Surface ocean CO2 atlas database version 2022 (SOCATv2022)(ncei accession 0253659). Earth System Science Data (2022).

Lauvset, S. K. et al. GLODAPv2. 2022: the latest version of the global interior ocean biogeochemical data product. Earth System Science Data Discussions 2022, 137 (2022).

Google Scholar

Takahashi, T. et al. Climatological distributions of pH, pCO2, total CO2, alkalinity, and CaCO3 saturation in the global surface ocean, and temporal changes at selected locations. Marine Chemistry 164, 95125 (2014).

Article CAS Google Scholar

Chau, T. T. T., Gehlen, M. & Chevallier, F. A seamless ensemble-based reconstruction of surface ocean pCO2 and airsea CO2 fluxes over the global coastal and open oceans. Biogeosciences 19, 10871109 (2022).

Article ADS CAS Google Scholar

Gregor, L., Lebehot, A. D., Kok, S. & Scheel Monteiro, P. M. A comparative assessment of the uncertainties of global surface ocean CO2 estimates using a machine-learning ensemble (csir-ml6 version 2019a)have we hit the wall? Geoscientific Model Development 12, 51135136 (2019).

Article ADS Google Scholar

Dixit, A., Lekshmi, K., Bharti, R. & Mahanta, C. Net seaair CO2 fluxes and modeled partial pressure of CO2 in open ocean of Bay of Bengal. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 12, 24622469 (2019).

Article ADS Google Scholar

Sridevi, B. & Sarma, V. Role of river discharge and warming on ocean acidification and pCO2 levels in the Bay of Bengal. Tellus B: Chemical and Physical Meteorology 73, 120 (2021).

Article CAS Google Scholar

Mohanty, S., Raman, M., Mitra, D. & Chauhan, P. Surface pCO2 variability in two contrasting basins of north Indian ocean using satellite data. Deep Sea Research Part I: Oceanographic Research Papers 179, 103665 (2022).

Article CAS Google Scholar

Joshi, A., Kumar, V. & Warrior, H. Modeling the sea-surface pCO2 of the central Bay of Bengal region using machine learning algorithms. Ocean Modelling 178, 102094 (2022).

Article Google Scholar

Sathyendranath, S. et al. An ocean-colour time series for use in climate studies: the experience of the ocean-colour climate change initiative (oc-cci). Sensors 19, 4285 (2019).

Article ADS CAS PubMed PubMed Central Google Scholar

Chevallier, F. et al. Inferring CO2 sources and sinks from satellite observations: Method and application to tovs data. Journal of Geophysical Research: Atmospheres 110 (2005).

Chevallier, F. et al. CO2 surface fluxes at grid point scale estimated from a global 21 year reanalysis of atmospheric measurements. Journal of Geophysical Research: Atmospheres 115 (2010).

Chevallier, F. On the parallelization of atmospheric inversions of CO2 surface fluxes within a variational framework. Geoscientific Model Development 6, 783790 (2013).

Article ADS Google Scholar

Pedregosa, F. et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research 12, 28252830 (2011).

MathSciNet Google Scholar

Friedrich, T. & Oschlies, A. Neural network-based estimates of north Atlantic surface pCO2 from satellite data: A methodological study. Journal of Geophysical Research: Oceans 114 (2009).

Jo, Y.-H., Dai, M., Zhai, W., Yan, X.-H. & Shang, S. On the variations of sea surface pCO2 in the northern South China sea: A remote sensing based neural network approach. Journal of Geophysical Research: Oceans 117 (2012).

Moussa, H., Benallal, M., Goyet, C. & Lefvre, N. Satellite-derived CO2 fugacity in surface seawater of the tropical atlantic ocean using a feedforward neural network. International Journal of Remote Sensing 37, 580598 (2016).

Article ADS Google Scholar

Wang, Y. et al. Carbon sinks and variations of pCO2 in the southern ocean from 1998 to 2018 based on a deep learning approach. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 14, 34953503 (2021).

Article ADS Google Scholar

OMalley, T. et al. Keras tuner. Retrieved May 21, 2020 (2019).

Google Scholar

Agarap, A. F. Deep learning using rectified linear units (relu). arXiv preprint arXiv:1803.08375 (2018).

Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization. Anon. International Conference on Learning Representations. SanDego: ICLR 7 (2015).

Chen, T. & Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, 785794 (2016).

Akiba, T., Sano, S., Yanase, T., Ohta, T. & Koyama, M. Optuna: A next-generation hyperparameter optimization framework. In Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining, 26232631 (2019).

Breiman, L. Random forests. Machine learning 45, 532 (2001).

Article Google Scholar

Lawrence, R. L., Wood, S. D. & Sheley, R. L. Mapping invasive plants using hyperspectral imagery and breiman cutler classifications (randomforest). Remote Sensing of Environment 100, 356362 (2006).

Article ADS Google Scholar

Akhil, V. P. et al. Bay of Bengal sea surface salinity variability using a decade of improved smos re-processing. Remote Sensing of Environment 248, 111964 (2020).

Article Google Scholar

Wanninkhof, R. Relationship between wind speed and gas exchange over the ocean. Journal of Geophysical Research: Oceans 97, 73737382 (1992).

Article Google Scholar

Hersbach, H. et al. The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146, 19992049 (2020).

Article ADS Google Scholar

Wanninkhof, R. Relationship between wind speed and gas exchange over the ocean revisited. Limnology and Oceanography: Methods 12, 351362 (2014).

Google Scholar

Weiss, R. Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Marine chemistry 2, 203215 (1974).

Article CAS Google Scholar

Joshi, A., Ghoshal, K., Prasanna, Chakraborty, K. & Sarma, V. Sea-surface pCO2 maps for the Bay of Bengal based on machine learning algorithms. Zenodo https://doi.org/10.5281/zenodo.8375320 (2024).

Taylor, K. E. Summarizing multiple aspects of model performance in a single diagram. Journal of Geophysical Research: Atmospheres 106, 71837192 (2001).

Article Google Scholar

Willmott, C. J. On the validation of models. Physical geography 2, 184194 (1981).

Article Google Scholar

Sabine, C., Wanninkhof, R., Key, R., Goyet, C. & Millero, F. Seasonal CO2 fluxes in the tropical and subtropical Indian ocean. Marine Chemistry 72, 3353 (2000).

Article CAS Google Scholar

Bates, N. R., Pequignet, A. C. & Sabine, C. L. Ocean carbon cycling in the Indian ocean: 1. spatiotemporal variability of inorganic carbon and air-sea CO2 gas exchange. Global Biogeochemical Cycles 20 (2006).

Schott, F. A. & McCreary, J. P. Jr The monsoon circulation of the Indian ocean. Progress in Oceanography 51, 1123 (2001).

Read this article:
Sea-surface pCO2 maps for the Bay of Bengal based on advanced machine learning algorithms | Scientific Data - Nature.com

Related Posts

Comments are closed.