Data collection Data collection
The research group collected 17-dimensional basic trait data (Supplementary Information1. andSupplementary Information 2.) of 25480 samples of community correction prisoners in Zhejiang Province, China, and the corresponding Symptom Checklist-90 (SCL-90) and Health Survey Short Form (SF-12) data. These data were collected through the standardized community correction digital management platform of the Zhejiang Provincial Department of Justice, covering the period from January 2020 to December 2020. The 17-dimensional characteristics mainly include age, sex, treatment level (general control, strict control), whether adult, education level, dmicile (urban or rural), whether there are infectious diseases, whether belongs to the following three categories (unemployed individuals, those without relatives to rely on, individuals without a place to live), whether there is a criminal record, crime type, supervision time, whether there is recidivism, whether there is anti-government tendency, whether there are five kinds of involvement (terrorism, cults, drugs, gangs, and gun trafficking), whether there are four histories (drug use history, escape history, suicide history, police assault history), correction status (in correction, released from the status of correction), occupation before arrest. The SCL-90 traditional scale obtained 9 kinds of psychological measurement indicators: somatization, obsessive-compulsive symptoms, interpersonal sensitivity, depression, anxiety, hostility, terror, paranoia, and psychosis. Due to the incomplete basic information registered in some judicial offices, the samples with missing values in the basic information were removed and matched, resulting in a total of 25,214 sample data.
Due to the privacy and compliance issue of patients, it is difficult to collect a large number of medical data, especially the data of specific groups. The research group has invested a lot of manpower, material and financial resources in the construction of this data set (Supplementary Information 3.).
The research design has been approved by the Ethics Research Committee of the Zhejiang Community Correction Management Bureau. This study was carried out in accordance with the Declaration of Helsinki, and all procedures were carried out in accordance with relevant guidelines and regulations. The Committee waived the requirement of informed consent for this study because the researchers only access the database for analysis purposes, and all personnel, including patient data, are desensitized, and there is no conflict of interest among personnel of each unit.
The pretreatment of tabulated data described in the paper includes missing value imputation, outlier detection and removal and data standardization, as follows:
Missing values refer to situations where the values of certain features or variables in a table are missing or not recorded. In machine learning modeling, handling missing values is crucial36. Choosing appropriate filling methods can improve the predictive performance of the model, making the data more complete and reliable37. In this study, there were some missing values in the raw data we used, and most of the missing values were filled in by manually tracing the raw materials. For a small amount of other missing values such as age and other quantitative data, we use mean interpolation to fill in, as the mean can represent the central trend of the data and help maintain its distribution.For qualitative data such as crime types, we use the median to fill in, which is a better choice because it can reduce the impact of extreme values while maintaining the order and level of the data38.
Outliers refer to data points that are significantly different from other data points or deviate from the normal range. Outliers may have adverse effects on data analysis and modeling, so they need to be eliminated or handled. To ensure the accuracy and reliability of the data, we carried out outlier detection and elimination. We use the Rajda criterion to deal with outliers. The process takes the given confidence probability of 99.7% as the standard, and is based on the standard deviation of 3 times of the data column. The abnormal data row greater than the value is deleted, and when the residual error vb of the measured value xb is greater than 3 times , outliers should be eliminated.
$$left| {vb} right| = left| {xb - x} right| > 3sigma .$$
Data standardization is to transform the data of different scales and ranges into a unified standard scale to eliminate the influence of dimensions and make different features comparable. In the stage of data preprocessing, we normalize the numerical features from minimum to maximum. By linearly mapping the values of each feature to the range of 0 to 1, we eliminate the differences of different feature scales and make them comparable.
Based on symptom checklist-90(SCL-90), this study constructed an adaptive scale (between question groups) simplification screening evaluation model based on multi-label classification algorithm, and used Health Survey Short Form(SF-12), a primary screening tool commonly used by community correction management institutions, as a simplified baseline method for comparative analysis.
We used the multi-label classification model for scale (between question groups) simplification to analyze the risk degree of individuals in nine categories of psychological measurement indicators, and simplified the scale structure based on the risk distribution. The goal of scale simplification is to simplify the questions, make the scale more readable and easy to understand, and help readers get core information and insight more quickly. During the process of scale simplification, it is necessary to make trade-offs and decisions according to the data and the needs of the audience to ensure that enough information is retained while maintaining simplicity and clarity.
The basic principle of the multi-label classification algorithm (as shown in Fig. 1 and Table 1) is to recognize the association between features and labels by learning historical data, so as to predict new labels. It can integrate the results of multiple tags, find the association between multiple tags, and solve the multiple conflicts that may exist in the multi-tag classification problem, so as to effectively improve the accuracy of classification. It can also help us quickly identify features, thus reducing the time of classification.
Binary relevance (first-order, y tags are independent of each other). It is a problem transformation method. The core idea is to decompose the multi-label classification problem. BR is simple and easy to understand. When there is no dependent relationship between Y values, the effect of the model is good.
Classifier chains (high-order, y tags are interdependent). Its principle is similar to the BR conversion method. In this case, the first classifier is trained only on the input data, and then each classifier is trained on all previous classifiers in the input space and chain. A certain number of binary classifiers can be combined into a single multi-label model to explore the correlation between multiple targets.
Rakle (random k-labelsets, high-order, y tags are interdependent). It can divide the original large tag set into a certain number of small tag sets, then use RF to train the corresponding classifier, and finally integrate the prediction results. RakeID is a high-order strategy algorithm, which can mine the correlation of multiple tags according to the size of the tag subset.
Multi label classification algorithm.
For the latter two algorithms, if there is a clear dependency between tags, the generalization ability of the final model is better than that of the model constructed by binary relevance. The problem is that it is difficult to find a more suitable tag dependency.
The core principle of oversampling method is to increase some samples in the category with fewer samples to achieve category balance. SMOTE is the representative algorithm of the oversampling method. In the process of modeling, SMOTE (Synthetic Minority Over-sampling Technique) is used to solve the problem of category imbalance. SMOTE increases the number of minority samples by synthesizing new minority samples, to balance the unbalanced data set.
Because the total number of samples collected is sufficient, the training data adopts 5-fold cross-validation to prevent the model from overfitting and increase the robustness of the model. The extracted feature data is randomly divided into five parts, four of which are used for training, and one part is retained as test data. The above process is repeated five times, using different test data each time. Then the results of these five times are summarized, and the average value is taken as the estimation of the algorithm performance index. Five cross-validation is a popular algorithm choice at present.
In this paper, SF-12 was used as a comparison tool. SF-12 is a commonly used health questionnaire survey tool, which is used to assess the health status and quality of life of individuals. SF-12 is a simplified version derived from the SF-36 questionnaire, which retains the core concepts and dimensions of SF-36. However, it reduces the number of questions and improves the efficiency of questionnaire implementation. The simplicity and efficiency of the SF-12 questionnaire make it a common tool in large-scale epidemiological research and clinical practice. It can be used to evaluate the health status of different groups and the effect of health intervention, and compare the health differences between different groups.
If all SCL-90 subscales of the actual sample are diagnosed as risk-free, the sample is defined as a negative sample. If any subscale test is risky, the sample is defined as a positive sample. Similarly, if all the sub-tags predicted by the multi-label model are 0, the sample is negative. If there is any positive sub-tag, the sample is positive:
If the actual 9 labels are all negative, the mental state is healthy and marked as a negative sample.
If one of the actual 9 labels is positive, the mental state is unhealthy and marked as a positive sample.
Similarly, if all of the predicted 9 tags are negative, the mental state is healthy and the tag is negative.
If one of the predicted 9 tags is positive, the mental state is unhealthy and marked as a positive sample.
According to the actual mental state and the predicted value, the confusion matrix (as shown in Table 2) is drawn, which is composed of the following four important definitions: true positive (TP), false positive (FP), false negative (FN) and true negative (TN).
The overall effect of the model is evaluated by the following indicators, including accuracy, sensitivity, specificity and F1. The relevant measurement standards are as follows:
$${text{Accuracy }} = left( {{text{TP }} + {text{ TN}}} right)/left( {{text{TP }} + {text{ TN }} + {text{ FP }} + {text{ FN}}} right),$$
$${text{Sensitivity }} = {text{ TP}}/left( {{text{TP }} + {text{ FN}}} right),$$
$${text{Precision }} = {text{ TP}}/left( {{text{TP }} + {text{ FP}}} right),$$
$${text{F1}} = {2} times {text{Sensitivity}} times {text{Precision}}/left( {{text{Precision}} + {text{Sensitivity}}} right).$$
In the multi label classification problem, accuracy_Score, Hamming loss and 0-1 loss related evaluation indicators can be based on the prediction results of a single tag or the overall prediction results.
Accuracy_Score is the correctly predicted score (default) or count. In multi-label classification, the function returns the subset precision. If the whole set of predicted tags of the sample matches the real tag combination, the subset accuracy is 1. Otherwise, it is 0.
Hamming loss: Hamming loss measures the prediction accuracy of the model for each label, that is, the ratio of the number of labels with average prediction errors to the total number of labels. It calculates the prediction result of each tag and returns a value between 0 and 1. The smaller the value, the more accurate the prediction is.
0-1 loss is a common classification loss function, which is used to measure the prediction error of the classification model. It takes 1 when the prediction is wrong and 0 when the prediction is correct, so it is named 0-1 loss.
Simplification rate refers to the proportion of the simplified scale to the original scale, which can be used to evaluate the degree of simplification of the scale. Scale simplification refers to simplifying the structure of the original scale by reducing the number of items, deleting redundant or unnecessary items, or merging multiple items. The simplification rate of the scale can be calculated in the following way: simplification rate (number of simplified items/original number of items) 100%. In other words, the simplification rate based on the multi-label model is calculated as follows: simplification rate (the number of sub-labels predicted to be negative)/(the total number of samples).
The Ethics Committee of the Zhejiang Community Correction Management Bureau has waived the informed consent requirement for this study, as researchers accessing the database is only for analytical purposes, including patient data, which is desensitized, and there are no conflicts of interest between personnel in each unit. The research design has been approved by the Ethics Research Committee of the Zhejiang Community Correction Management Bureau. This study was conducted in accordance with the Helsinki Declaration, and all procedures were conducted in accordance with relevant guidelines and regulations.
Continued here:
Research on a machine learning-based adaptive and efficient screening model for psychological symptoms of ... - Nature.com
- What Is Machine Learning? | How It Works, Techniques ... [Last Updated On: September 5th, 2019] [Originally Added On: September 5th, 2019]
- Start Here with Machine Learning [Last Updated On: September 22nd, 2019] [Originally Added On: September 22nd, 2019]
- What is Machine Learning? | Emerj [Last Updated On: October 1st, 2019] [Originally Added On: October 1st, 2019]
- Microsoft Azure Machine Learning Studio [Last Updated On: October 1st, 2019] [Originally Added On: October 1st, 2019]
- Machine Learning Basics | What Is Machine Learning? | Introduction To Machine Learning | Simplilearn [Last Updated On: October 1st, 2019] [Originally Added On: October 1st, 2019]
- What is Machine Learning? A definition - Expert System [Last Updated On: October 2nd, 2019] [Originally Added On: October 2nd, 2019]
- Machine Learning | Stanford Online [Last Updated On: October 2nd, 2019] [Originally Added On: October 2nd, 2019]
- How to Learn Machine Learning, The Self-Starter Way [Last Updated On: October 17th, 2019] [Originally Added On: October 17th, 2019]
- definition - What is machine learning? - Stack Overflow [Last Updated On: November 3rd, 2019] [Originally Added On: November 3rd, 2019]
- Artificial Intelligence vs. Machine Learning vs. Deep ... [Last Updated On: November 3rd, 2019] [Originally Added On: November 3rd, 2019]
- Machine Learning in R for beginners (article) - DataCamp [Last Updated On: November 3rd, 2019] [Originally Added On: November 3rd, 2019]
- Machine Learning | Udacity [Last Updated On: November 3rd, 2019] [Originally Added On: November 3rd, 2019]
- Machine Learning Artificial Intelligence | McAfee [Last Updated On: November 3rd, 2019] [Originally Added On: November 3rd, 2019]
- Machine Learning [Last Updated On: November 3rd, 2019] [Originally Added On: November 3rd, 2019]
- AI-based ML algorithms could increase detection of undiagnosed AF - Cardiac Rhythm News [Last Updated On: November 19th, 2019] [Originally Added On: November 19th, 2019]
- The Cerebras CS-1 computes deep learning AI problems by being bigger, bigger, and bigger than any other chip - TechCrunch [Last Updated On: November 19th, 2019] [Originally Added On: November 19th, 2019]
- Can the planet really afford the exorbitant power demands of machine learning? - The Guardian [Last Updated On: November 19th, 2019] [Originally Added On: November 19th, 2019]
- New InfiniteIO Platform Reduces Latency and Accelerates Performance for Machine Learning, AI and Analytics - Business Wire [Last Updated On: November 19th, 2019] [Originally Added On: November 19th, 2019]
- How to Use Machine Learning to Drive Real Value - eWeek [Last Updated On: November 19th, 2019] [Originally Added On: November 19th, 2019]
- Machine Learning As A Service Market to Soar from End-use Industries and Push Revenues in the 2025 - Downey Magazine [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Rad AI Raises $4M to Automate Repetitive Tasks for Radiologists Through Machine Learning - - HIT Consultant [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Machine Learning Improves Performance of the Advanced Light Source - Machine Design [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Synthetic Data: The Diamonds of Machine Learning - TDWI [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- The transformation of healthcare with AI and machine learning - ITProPortal [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Workday talks machine learning and the future of human capital management - ZDNet [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Machine Learning with R, Third Edition - Free Sample Chapters - Neowin [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Verification In The Era Of Autonomous Driving, Artificial Intelligence And Machine Learning - SemiEngineering [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Podcast: How artificial intelligence, machine learning can help us realize the value of all that genetic data we're collecting - Genetic Literacy... [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- The Real Reason Your School Avoids Machine Learning - The Tech Edvocate [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- Siri, Tell Fido To Stop Barking: What's Machine Learning, And What's The Future Of It? - 90.5 WESA [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- Microsoft reveals how it caught mutating Monero mining malware with machine learning - The Next Web [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- The role of machine learning in IT service management - ITProPortal [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- Global Director of Tech Exploration Discusses Artificial Intelligence and Machine Learning at Anheuser-Busch InBev - Seton Hall University News &... [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- The 10 Hottest AI And Machine Learning Startups Of 2019 - CRN: The Biggest Tech News For Partners And The IT Channel [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- Startup jobs of the week: Marketing Communications Specialist, Oracle Architect, Machine Learning Scientist - BetaKit [Last Updated On: November 30th, 2019] [Originally Added On: November 30th, 2019]
- Here's why machine learning is critical to success for banks of the future - Tech Wire Asia [Last Updated On: December 2nd, 2019] [Originally Added On: December 2nd, 2019]
- 3 questions to ask before investing in machine learning for pop health - Healthcare IT News [Last Updated On: December 8th, 2019] [Originally Added On: December 8th, 2019]
- Machine Learning Answers: If Caterpillar Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 8th, 2019] [Originally Added On: December 8th, 2019]
- Measuring Employee Engagement with A.I. and Machine Learning - Dice Insights [Last Updated On: December 8th, 2019] [Originally Added On: December 8th, 2019]
- Amazon Wants to Teach You Machine Learning Through Music? - Dice Insights [Last Updated On: December 8th, 2019] [Originally Added On: December 8th, 2019]
- Machine Learning Answers: If Nvidia Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 8th, 2019] [Originally Added On: December 8th, 2019]
- AI and machine learning platforms will start to challenge conventional thinking - CRN.in [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Machine Learning Answers: If Twitter Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Machine Learning Answers: If Seagate Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Machine Learning Answers: If BlackBerry Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Amazon Releases A New Tool To Improve Machine Learning Processes - Forbes [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Another free web course to gain machine-learning skills (thanks, Finland), NIST probes 'racist' face-recog and more - The Register [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Kubernetes and containers are the perfect fit for machine learning - JAXenter [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- TinyML as a Service and machine learning at the edge - Ericsson [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- AI and machine learning products - Cloud AI | Google Cloud [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Machine Learning | Blog | Microsoft Azure [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Machine Learning in 2019 Was About Balancing Privacy and Progress - ITPro Today [Last Updated On: December 25th, 2019] [Originally Added On: December 25th, 2019]
- CMSWire's Top 10 AI and Machine Learning Articles of 2019 - CMSWire [Last Updated On: December 25th, 2019] [Originally Added On: December 25th, 2019]
- Here's why digital marketing is as lucrative a career as data science and machine learning - Business Insider India [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- Dell's Latitude 9510 shakes up corporate laptops with 5G, machine learning, and thin bezels - PCWorld [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- Finally, a good use for AI: Machine-learning tool guesstimates how well your code will run on a CPU core - The Register [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- Cloud as the enabler of AI's competitive advantage - Finextra [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- Forget Machine Learning, Constraint Solvers are What the Enterprise Needs - - RTInsights [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- Informed decisions through machine learning will keep it afloat & going - Sea News [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- The Problem with Hiring Algorithms - Machine Learning Times - machine learning & data science news - The Predictive Analytics Times [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- New Program Supports Machine Learning in the Chemical Sciences and Engineering - Newswise [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- AI-System Flags the Under-Vaccinated in Israel - PrecisionVaccinations [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- New Contest: Train All The Things - Hackaday [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- AFTAs 2019: Best New Technology Introduced Over the Last 12 MonthsAI, Machine Learning and AnalyticsActiveViam - www.waterstechnology.com [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Educate Yourself on Machine Learning at this Las Vegas Event - Small Business Trends [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Seton Hall Announces New Courses in Text Mining and Machine Learning - Seton Hall University News & Events [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Looking at the most significant benefits of machine learning for software testing - The Burn-In [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Leveraging AI and Machine Learning to Advance Interoperability in Healthcare - - HIT Consultant [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Adventures With Artificial Intelligence and Machine Learning - Toolbox [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Five Reasons to Go to Machine Learning Week 2020 - Machine Learning Times - machine learning & data science news - The Predictive Analytics Times [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Uncover the Possibilities of AI and Machine Learning With This Bundle - Interesting Engineering [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Learning that Targets Millennial and Generation Z - HR Exchange Network [Last Updated On: January 23rd, 2020] [Originally Added On: January 23rd, 2020]
- Red Hat Survey Shows Hybrid Cloud, AI and Machine Learning are the Focus of Enterprises - Computer Business Review [Last Updated On: January 23rd, 2020] [Originally Added On: January 23rd, 2020]
- Vectorspace AI Datasets are Now Available to Power Machine Learning (ML) and Artificial Intelligence (AI) Systems in Collaboration with Elastic -... [Last Updated On: January 23rd, 2020] [Originally Added On: January 23rd, 2020]
- What is Machine Learning? | Types of Machine Learning ... [Last Updated On: January 23rd, 2020] [Originally Added On: January 23rd, 2020]
- How Machine Learning Will Lead to Better Maps - Popular Mechanics [Last Updated On: January 30th, 2020] [Originally Added On: January 30th, 2020]
- Jenkins Creator Launches Startup To Speed Software Testing with Machine Learning -- ADTmag - ADT Magazine [Last Updated On: January 30th, 2020] [Originally Added On: January 30th, 2020]
- An Open Source Alternative to AWS SageMaker - Datanami [Last Updated On: January 30th, 2020] [Originally Added On: January 30th, 2020]
- Machine Learning Could Aid Diagnosis of Barrett's Esophagus, Avoid Invasive Testing - Medical Bag [Last Updated On: January 30th, 2020] [Originally Added On: January 30th, 2020]
- OReilly and Formulatedby Unveil the Smart Cities & Mobility Ecosystems Conference - Yahoo Finance [Last Updated On: January 30th, 2020] [Originally Added On: January 30th, 2020]