Predicting soil cone index and assessing suitability for wind and solar farm development in using machine learning … – Nature.com

Day, S. D. & Bassuk, N. L. A review of the effects of soil compaction and amelioration treatments on landscape trees. J. Arboric. 20(1), 917 (1994).

Google Scholar

Batey, T. Soil compaction and soil management: A review. Soil Use Manag. 25(4), 335345 (2009).

Article Google Scholar

Nawaz, M. F., Bourrie, G. & Trolard, F. Soil compaction impact and modelling: A review. Agron. Sustain. Dev. 33, 291309 (2013).

Article Google Scholar

Lipiec, J. & Hatano, R. Quantification of compaction effects on soil physical properties and crop growth. Geoderma 116(12), 107136 (2003).

Article ADS Google Scholar

Zhang, S., Grip, H. & Lvdahl, L. Effect of soil compaction on hydraulic properties of two loess soils in China. Soil Till. Res. 90(12), 117125 (2006).

Article Google Scholar

Shah, A. N. et al. Soil compaction effects on soil health and cropproductivity: An overview. Environ. Sci. Pollut. Res. 24, 1005610067 (2017).

Article Google Scholar

Brevik, E. C. & Sauer, T. J. The past, present, and future of soils and human health studies. Soil 1(1), 3546 (2015).

Article ADS Google Scholar

Alpers, W., Zhao, Y., Mouche, A. A. & Chan, P. W. A note on radar signatures of hydrometeors in the melting layer as inferred from Sentinel-1 SAR data acquired over the ocean. Remote Sens. Environ. 253, 112177 (2021).

Article Google Scholar

Coopersmith, E. J., Minsker, B. S., Wenzel, C. E. & Gilmore, B. J. Machine learning assessments of soil drying for agricultural planning. Comput. Electron. Agric. 104, 93104 (2014).

Article Google Scholar

Rahimi-Ajdadi, F. & Abbaspour-Gilandeh, Y. A review on the soil compaction measurement systems. In Conference Proceedings, First International Conference on Organic vs Conventional Agriculture, pp. 17 (2017).

Raper, R. L., & Mac Kirby, J. Soil compaction: How to do it, undo it, or avoid doing it. Presented at the 2006 Agricultural Equipment Technology Conference, Louisville, Kentucky, USA, 12-14 February, pp. 115 (The American Society of Agricultural and Biological Engineers, 2006).

Ziyaee, A. & Roshani, M. R. A survey study on soil compaction problems for new methods in agriculture. Int. Res. J. Appl. Basic Sci. 3(9), 17871801 (2012).

Google Scholar

Brevik, E. C, & Sauer, T. J. The soil cone penetrometer test: Uses, principles, and applications. Vadose Zone J. 5, 5865 (2015).

Google Scholar

Chan, Y. et al. Prediction of soil compaction degree in typical soils of Beijing city by a machine learning algorithm. Soil Till. Res. 205, 104800 (2021).

Google Scholar

Hemmat, A., Karimzadeh, S. & Karimi, A. Comparison of artificial neural networks and regression models for predicting soil cone penetration resistance. Soil Till. Res. 143, 3845 (2014).

Google Scholar

Abbaspour-Gilandeh, Y. & Rahimi-Ajdadi, F. Modeling of soil compaction using neural networks and regression tree: A case study in Iran. J. Agric. Sci. Technol. 18(5), 12711282 (2016).

Google Scholar

Clark, R. N. Quantitative models of soil genesis. Geoderma 89(12), 126 (1999).

Google Scholar

Mulqueen, J. A., McBratney, A. B. & Minasny, B. The measurement of soil strength and its application to tillage. Aust. J. Soil Res. 15(2), 137149 (1977).

Google Scholar

Kumar, A., Chen, Y., Sadek, M.A.-A. & Rahman, S. Soil cone index in relation to soil texture, moisture content, and bulk density for no-tillage and conventional tillage. Agric. Eng. Int. CIGR J. 14(1), 2637 (2012).

Google Scholar

Hummel, J. W., Ahmad, I. S., Newman, S. C., Sudduth, K. A. & Drummond, S. T. Simultaneous soil moisture and cone index measurement. Trans. ASAE 47(3), 607 (2004).

Article Google Scholar

Zajcov, K. & Chuman, T. Application of ground penetrating radar methods in soil studies: A review. Geoderma 343, 116129 (2019).

Article ADS Google Scholar

Tekeste, M. Z., Raper, R. L., & Schwab, E. B. Soil drying effects on soil strength and depth of hardpan layers as determined from cone index data. Agric. Eng. Int.: CIGR J. X, Manuscript LW 07 010 (2008).

Google Scholar

Jabro, J. D., Stevens, W. B., Iversen, W. M., Sainju, U. M. & Allen, B. L. Soil cone index and bulk density of a sandy loam under no-till and conventional tillage in a corn-soybean rotation. Soil Till. Res. 206, 104842 (2021).

Article Google Scholar

Aase, J. K., Bjorneberg, D. L. & Sojka, R. E. Zonesubsoiling relationships to bulk density and cone index on a furrow-irrigated soil. Trans. ASAE 44(3), 577 (2001).

Google Scholar

Way, T. R., Kishimoto, T., Torbert, A. H., Burt, E. C. & Bailey, A. C. Tractor tire aspect ratio effects on soil bulk density and cone index. J. Terramech. 46(1), 2734 (2009).

Article Google Scholar

Agodzo, S. K, & Adama, I. Bulk density, cone index and water content relations for some Ghanian soils. Invited presentations at the College on Soil Physics, 2003. Agricultural Engineering Department, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana. (2004).

Sojka, R. E., Busscher, W. J. & Lehrsch, G. A. In situ strength, bulk density, and water content relationships of a Durinodic Xeric Haplocalcid soil. Soil Sci. 166(8), 520529 (2001).

Article ADS CAS Google Scholar

Hulugalle, N. R. & Entwistle, P. Soil properties, nutrient uptake and crop growth in an irrigated Vertisol after nine years of minimum tillage. Soil Till. Res. 42(12), 1532 (1997).

Article Google Scholar

Raper, R. L. Agricultural traffic impacts on soil. J. Terrramech. 42(34), 259280 (2005).

Article Google Scholar

Ayers, P. D. & Perumpral, J. V. Moisture and density effect on cone index. Trans. ASAE 25(5), 11691172 (1982).

Article Google Scholar

Mason, G. L. et al. An overview of methods to convert cone index to bevameter parameters. J. Terrramech. 87, 19 (2020).

Article Google Scholar

Elbanna, E. B. & Witney, B. D. Cone penetration resistance equation as a function of the clay ratio, soil moisture content and specific weight. J. Terrramech. 24(1), 4156 (1987).

Article Google Scholar

Liu, X. et al. Measurement of soil water content using ground-penetrating radar: A review of current methods. Int. J. Digit. Earth 12(1), 95118 (2019).

Article ADS Google Scholar

Sun, Y., Lammers, P. S. & Damerow, L. A dual sensor for simultaneous investigation of soil cone index and moisture content. Agric. Forschung. J. 9(1), E12E15 (2003).

Google Scholar

Rahman, M. M. et al. Mapping surface roughness and soil moisture using multi-angle radar imagery without ancillary data. Remote Sens. Environ. 112(2), 391402 (2008).

Article ADS Google Scholar

Ahmadi, H. & Mollazade, K. Effect of plowing depth and soil moisture content on reduced secondary tillage. Agric. Eng. Int. CIGR EJournal 11, 19 (2009).

Google Scholar

Oskoui, K. E. & Witney, B. D. The determination of plough draught-Part I. Prediction from soil and meteorological data with cone index as the soil strength parameter. J. Terramech. 19(2), 97106 (1982).

Article Google Scholar

Son, J., Jung, I., Park, K., & Han, B. Tracking-by-segmentation with online gradient boosting decision tree. In Proceedings of the IEEE International Conference on Computer Vision, 30563064 (2015).

Anghel, A., Papandreou, N., Parnell, T., De Palma, A., & Pozidis, H. Benchmarking and optimization of gradient boosting decision tree algorithms. arXiv preprint arXiv:1809.04559 (2018).

Machado, M. R., Karray, S., & de Sousa, I. T. LightGBM: An effective decision tree gradient boosting method to predict customer loyalty in the finance industry. In 2019 14th International Conference on Computer Science and Education (ICCSE), 11111116. IEEE (2019).

Jafari, A., Khademi, H., Finke, P. A., Van de Wauw, J. & Ayoubi, S. Spatial prediction of soil great groups by boosted regression trees using a limited point dataset in an arid region, southeastern Iran. Geoderma 232, 148163 (2014).

Article ADS Google Scholar

Dube, T., Mutanga, O., Abdel-Rahman, E. M., Ismail, R. & Slotow, R. Predicting Eucalyptus spp. stand volume in Zululand, South Africa: An analysis using a stochastic gradient boosting regression ensemble with multi-source data sets. Int. J. Remote Sens. 36(14), 37513772 (2015).

Article Google Scholar

Sauer, B. & Henderson, N. Site-specific DNA recombination in mammalian cells by the Cre recombinase of bacteriophage P1. Proc. Natl. Acad. Sci. 85(14), 51665170 (1988).

Article ADS CAS PubMed PubMed Central Google Scholar

Pham, T. D. et al. Comparison of machine learning methods for estimating mangrove above-ground biomass using multiple source remote sensing data in the red river delta biosphere reserve, Vietnam. Remote Sens. 12(8), 1334 (2020).

Article ADS Google Scholar

Aali, K. A., Parsinejad, M. & Rahmani, B. Estimation of saturation percentage of soil using multiple regression, ANN, and ANFIS techniques. Comput. Inf. Sci. 2(3), 127136 (2009).

Google Scholar

Goh, A. T. C. Back-propagation neural networks for modeling complex systems. Artif. Intell. Eng. 9(3), 143151 (1995).

Article Google Scholar

Kushwaha, R. L. & Zhang, Z. X. Evaluation of factors and current approaches related to computerized design of tillage tools: A review. J. Terrramech. 35(2), 6986 (1998).

Article Google Scholar

Khalilian, M., Shakib, H. & Basim, M. C. On the optimal performance-based seismic design objective for steel moment resisting frames based on life cycle cost. J. Build. Eng. 44, 103091 (2021).

Article Google Scholar

Pourmoghadam, Z. et al. Intrauterine administration of autologous hCG-activated peripheral blood mononuclear cells improves pregnancy outcomes in patients with recurrent implantation failure; A double-blind, randomized control trial study. J. Reprod. Immunol. 142, 103182 (2020).

Article CAS PubMed Google Scholar

Babaeian, E. et al. Ground, proximal, and satellite remote sensing of soil moisture. Rev. Geophys. 57(2), 530616 (2019).

Article ADS Google Scholar

Faure, A. G., Viana, J. D. & Mata, D. Penetration resistance value along compaction curves. J. Geotech. Eng. 120(1), 4659 (1994).

Article Google Scholar

Safi, S. R., Gotoh, T., Iizawa, T. & Nakai, S. Development and regeneration of composite of cationic gel and iron hydroxide for adsorbing arsenic from ground water. Chemosphere 217, 808815 (2019).

Article ADS CAS PubMed Google Scholar

Mehdizadeh, S. & Nikbakht, A. M. Predicting soil cone index using machine learning algorithms. J. Agric. Sci. Technol. 22(2), 327337 (2020).

Google Scholar

Read the original here:
Predicting soil cone index and assessing suitability for wind and solar farm development in using machine learning ... - Nature.com

Related Posts

Comments are closed.