If a financial institution looks beyond the hype of AI and tempers its expectations, it can use AI to deliver measurable business results. Thats been the experience of Amounts director of decision science Garrett Laird.
Given the interest in Chat GPT and related tools, the recent buzz around AI is understandable. Like many in fintech, Laird reminds the excited that AI has been around in such forms as machine learning for years. Avant has used machine learning in credit underwriting for at least a decade.
Its not a silver bullet, Laird said. It does some things really, really well. But it wont solve all your problems, especially in our space.
Financial products are highly regulated, right? These new LLMs (large language models) are entirely unexplainable; theyre pretty much true black-box models, so they limit the applications and use cases.
Laird sees clear use cases in outlier detection and unsupervised learning. He credits the current AI fervor with igniting interest in LLMs. As businesses look for ways to deploy LLMs, they are also looking at other AI types.
Regulations prevent AI from being used everywhere in financial services. Laird cited the many protected classifications that dictate how and where advertisements and solicitations can be sent. If your AI model cannot explain why one customer got an offer while another did not, youre asking for trouble.
Machine learning can be used to become more compliant because you can empirically describe why youre making the decisions youre making, Laird said. When there are humans making decisions everyone has their implicit biases, and those are hard to measure or even know what they are.
With algorithms and machine learning, you can empirically understand if a model is biased and in what ways and then you can control for that. While there are many restrictions on one side, I think many things were doing with machine learning and AI benefit consumers from a discrimination and compliance perspective.
Laird said the training models depend on what their systems are used for. Fraud models must be updated quickly and often with third-party sources, historical information and consumer data.
This is one area where machine learning helps. Machine learning operations can ensure proper validations are completed. They prevent it from picking up discriminatory data or information from protected classes.
Laird said an industry cliche is that 90% of machine learning work is data preparation. That has two parts: having relevant data and ensuring it is accessible in real time so it can make valuable business decisions.
While credit provision might not bring the same urgency as fraud, Laird also advises considering how it can benefit from AI. Credit models must have strong governance and risk management processes in place. They need good data sets. Lenders require a thorough understanding of their customers, which, in the case of mortgages, can take years.
Getting access to the right data is a huge challenge, and then making sure its the right population, Laird said. Thats a trend the industry is moving in: product-specific but also customer-base-specific modelling.
The direction were headed is like the democratization of machine learning for credit underwriting where you have models that are very catered to your very unique situation. That challenges many banks because it takes a lot of human capital. Having it takes a lot of data, and its not something you have overnight.
Also read:
AI lowers the entry barrier for fraudsters by providing sophisticated tools and allowing them to communicate in better-quality English. Combatting them also involves AI as one of many layers.
However, AI is used differently with different fraud types. First-party fraudsters can evade identity checks, which introduce friction for legitimate customers.
Third-party fraud brings challenges to supervised models. Those models are based on learnings from previous cases of such fraud. Their characteristics are identified, and models are developed. AI can help to identify those patterns quickly.
However, the process is never-ending because systems must quickly adjust as fraudsters determine how to beat mitigation challenges. Laird said he focuses on that by deploying velocity checks.
We put a lot of mental effort into identifying ways to pick up on these clusters of bad actors, Laird said. And there are many ways you can do that. A couple of the interesting ones that we employ are velocity checks. A lot of times, a fraud ring will exhibit similar behaviors. They might be applying from a certain geography, have the same bank theyre applying from, or have similar device data. They might use VOIP, any number of like attributes.
Laird said some institutions also use unsupervised learning. They might not have specific targets, but they can detect patterns using clustering algorithms. If a population starts defaulting or claiming fraud, the algorithms can identify similar behaviors that need further scrutiny.
Recent financial sector turbulence lends itself to rising deposit-related fraud. If a banks defences are sub-par, they could find themselves vulnerable to fraud that is already happening.
That is probably a problem thats already starting to rear its head and will only get worse, Laird suggested. I think with all of the movement in deposits that happened this past spring, with SVB and all the other events, there was a mad rush of deposit opening.
And with that, two things always happen. Theres an influx of volume. It makes it easier for fraudsters to slip through the cracks. Also, many banks saw that as an opportunity and probably either rushed solutions out or reduced some of their defences. We think theres probably a lot of dormant, recently opened deposit accounts that are probably in the near future going to be utilized as vehicles for bust-out fraud.
Laird returned to case-specific modelling as a significant emerging trend. FICO and Vantage are good models many use, but theyre generic for everything from mortgages to credit cards and personal loans. Casting a wide net limits accuracy, and given increased competition, more bespoke models are a must.
I can go on Credit Karma and get 20 offers with two clicks of a button, or I can go to 100 different websites and get an offer without impacting my credit, Laird observed. If youre trying to compete with that, if your pricing is just based on a FICO score or Vantage score, youre going to get that 700 FICO customer thats trending towards 650, whereas someone with a more advanced credit model is going to get that 700 thats trending towards 750.
Laird is eagerly watching developments following the Consumer Financial Protection Bureaus recent announcement on open banking. Financial institutions must make their banking data available.
Thats a modelling goldmine, Laird said. Financial institutions had an advantage in lending to their customer bases because only they can access that information. Now that its publicly available, that data can be used by all financial institutions to make underwriting decisions. Laird said its mission-critical for financial institutions to have good solutions.
Financial institutions generally take conservative approaches to AI. Most have used Generative AI for internal efficiencies, not direct customer interactions. That time will come but in limited capacities.
Laird reiterated his excitement about the renewed interest in machine learning. He believes they are well-suited to address the problems.
Im excited that theres that renewed interest in investment and an appetite for starting to leverage AI for fraud, Laird said. Its been there for a while.
I think the increased focus on credit underwriting is another one that I get really excited about because with the new open banking regulations coming out, I think financial institutions that dont embrace it are going to get left behind. Theyre going to be adversely selected; theyre not going to be able to remain competitive. It behooves everyone to start thinking about it and understanding ways to leverage that from not just the traditional fraud focuses but increasingly on the credit side.
Tony is a long-time contributor in the fintech and alt-fi spaces.A two-time LendIt Journalist of the Year nominee and winner in 2018, Tony has written more than 2,000 original articles on the blockchain, peer-to-peer lending, crowdfunding, and emerging technologies over the past seven years.He has hosted panels at LendIt, the CfPA Summit, and DECENT's Unchained, a blockchain exposition in Hong Kong. Email Tony here.
Read this article:
Looking beyond the AI hype: Delivering real value for financial ... - Fintech Nexus News
- What Is Machine Learning? | How It Works, Techniques ... [Last Updated On: September 5th, 2019] [Originally Added On: September 5th, 2019]
- Start Here with Machine Learning [Last Updated On: September 22nd, 2019] [Originally Added On: September 22nd, 2019]
- What is Machine Learning? | Emerj [Last Updated On: October 1st, 2019] [Originally Added On: October 1st, 2019]
- Microsoft Azure Machine Learning Studio [Last Updated On: October 1st, 2019] [Originally Added On: October 1st, 2019]
- Machine Learning Basics | What Is Machine Learning? | Introduction To Machine Learning | Simplilearn [Last Updated On: October 1st, 2019] [Originally Added On: October 1st, 2019]
- What is Machine Learning? A definition - Expert System [Last Updated On: October 2nd, 2019] [Originally Added On: October 2nd, 2019]
- Machine Learning | Stanford Online [Last Updated On: October 2nd, 2019] [Originally Added On: October 2nd, 2019]
- How to Learn Machine Learning, The Self-Starter Way [Last Updated On: October 17th, 2019] [Originally Added On: October 17th, 2019]
- definition - What is machine learning? - Stack Overflow [Last Updated On: November 3rd, 2019] [Originally Added On: November 3rd, 2019]
- Artificial Intelligence vs. Machine Learning vs. Deep ... [Last Updated On: November 3rd, 2019] [Originally Added On: November 3rd, 2019]
- Machine Learning in R for beginners (article) - DataCamp [Last Updated On: November 3rd, 2019] [Originally Added On: November 3rd, 2019]
- Machine Learning | Udacity [Last Updated On: November 3rd, 2019] [Originally Added On: November 3rd, 2019]
- Machine Learning Artificial Intelligence | McAfee [Last Updated On: November 3rd, 2019] [Originally Added On: November 3rd, 2019]
- Machine Learning [Last Updated On: November 3rd, 2019] [Originally Added On: November 3rd, 2019]
- AI-based ML algorithms could increase detection of undiagnosed AF - Cardiac Rhythm News [Last Updated On: November 19th, 2019] [Originally Added On: November 19th, 2019]
- The Cerebras CS-1 computes deep learning AI problems by being bigger, bigger, and bigger than any other chip - TechCrunch [Last Updated On: November 19th, 2019] [Originally Added On: November 19th, 2019]
- Can the planet really afford the exorbitant power demands of machine learning? - The Guardian [Last Updated On: November 19th, 2019] [Originally Added On: November 19th, 2019]
- New InfiniteIO Platform Reduces Latency and Accelerates Performance for Machine Learning, AI and Analytics - Business Wire [Last Updated On: November 19th, 2019] [Originally Added On: November 19th, 2019]
- How to Use Machine Learning to Drive Real Value - eWeek [Last Updated On: November 19th, 2019] [Originally Added On: November 19th, 2019]
- Machine Learning As A Service Market to Soar from End-use Industries and Push Revenues in the 2025 - Downey Magazine [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Rad AI Raises $4M to Automate Repetitive Tasks for Radiologists Through Machine Learning - - HIT Consultant [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Machine Learning Improves Performance of the Advanced Light Source - Machine Design [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Synthetic Data: The Diamonds of Machine Learning - TDWI [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- The transformation of healthcare with AI and machine learning - ITProPortal [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Workday talks machine learning and the future of human capital management - ZDNet [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Machine Learning with R, Third Edition - Free Sample Chapters - Neowin [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Verification In The Era Of Autonomous Driving, Artificial Intelligence And Machine Learning - SemiEngineering [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Podcast: How artificial intelligence, machine learning can help us realize the value of all that genetic data we're collecting - Genetic Literacy... [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- The Real Reason Your School Avoids Machine Learning - The Tech Edvocate [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- Siri, Tell Fido To Stop Barking: What's Machine Learning, And What's The Future Of It? - 90.5 WESA [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- Microsoft reveals how it caught mutating Monero mining malware with machine learning - The Next Web [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- The role of machine learning in IT service management - ITProPortal [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- Global Director of Tech Exploration Discusses Artificial Intelligence and Machine Learning at Anheuser-Busch InBev - Seton Hall University News &... [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- The 10 Hottest AI And Machine Learning Startups Of 2019 - CRN: The Biggest Tech News For Partners And The IT Channel [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- Startup jobs of the week: Marketing Communications Specialist, Oracle Architect, Machine Learning Scientist - BetaKit [Last Updated On: November 30th, 2019] [Originally Added On: November 30th, 2019]
- Here's why machine learning is critical to success for banks of the future - Tech Wire Asia [Last Updated On: December 2nd, 2019] [Originally Added On: December 2nd, 2019]
- 3 questions to ask before investing in machine learning for pop health - Healthcare IT News [Last Updated On: December 8th, 2019] [Originally Added On: December 8th, 2019]
- Machine Learning Answers: If Caterpillar Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 8th, 2019] [Originally Added On: December 8th, 2019]
- Measuring Employee Engagement with A.I. and Machine Learning - Dice Insights [Last Updated On: December 8th, 2019] [Originally Added On: December 8th, 2019]
- Amazon Wants to Teach You Machine Learning Through Music? - Dice Insights [Last Updated On: December 8th, 2019] [Originally Added On: December 8th, 2019]
- Machine Learning Answers: If Nvidia Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 8th, 2019] [Originally Added On: December 8th, 2019]
- AI and machine learning platforms will start to challenge conventional thinking - CRN.in [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Machine Learning Answers: If Twitter Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Machine Learning Answers: If Seagate Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Machine Learning Answers: If BlackBerry Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Amazon Releases A New Tool To Improve Machine Learning Processes - Forbes [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Another free web course to gain machine-learning skills (thanks, Finland), NIST probes 'racist' face-recog and more - The Register [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Kubernetes and containers are the perfect fit for machine learning - JAXenter [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- TinyML as a Service and machine learning at the edge - Ericsson [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- AI and machine learning products - Cloud AI | Google Cloud [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Machine Learning | Blog | Microsoft Azure [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Machine Learning in 2019 Was About Balancing Privacy and Progress - ITPro Today [Last Updated On: December 25th, 2019] [Originally Added On: December 25th, 2019]
- CMSWire's Top 10 AI and Machine Learning Articles of 2019 - CMSWire [Last Updated On: December 25th, 2019] [Originally Added On: December 25th, 2019]
- Here's why digital marketing is as lucrative a career as data science and machine learning - Business Insider India [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- Dell's Latitude 9510 shakes up corporate laptops with 5G, machine learning, and thin bezels - PCWorld [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- Finally, a good use for AI: Machine-learning tool guesstimates how well your code will run on a CPU core - The Register [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- Cloud as the enabler of AI's competitive advantage - Finextra [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- Forget Machine Learning, Constraint Solvers are What the Enterprise Needs - - RTInsights [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- Informed decisions through machine learning will keep it afloat & going - Sea News [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- The Problem with Hiring Algorithms - Machine Learning Times - machine learning & data science news - The Predictive Analytics Times [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- New Program Supports Machine Learning in the Chemical Sciences and Engineering - Newswise [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- AI-System Flags the Under-Vaccinated in Israel - PrecisionVaccinations [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- New Contest: Train All The Things - Hackaday [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- AFTAs 2019: Best New Technology Introduced Over the Last 12 MonthsAI, Machine Learning and AnalyticsActiveViam - www.waterstechnology.com [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Educate Yourself on Machine Learning at this Las Vegas Event - Small Business Trends [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Seton Hall Announces New Courses in Text Mining and Machine Learning - Seton Hall University News & Events [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Looking at the most significant benefits of machine learning for software testing - The Burn-In [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Leveraging AI and Machine Learning to Advance Interoperability in Healthcare - - HIT Consultant [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Adventures With Artificial Intelligence and Machine Learning - Toolbox [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Five Reasons to Go to Machine Learning Week 2020 - Machine Learning Times - machine learning & data science news - The Predictive Analytics Times [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Uncover the Possibilities of AI and Machine Learning With This Bundle - Interesting Engineering [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Learning that Targets Millennial and Generation Z - HR Exchange Network [Last Updated On: January 23rd, 2020] [Originally Added On: January 23rd, 2020]
- Red Hat Survey Shows Hybrid Cloud, AI and Machine Learning are the Focus of Enterprises - Computer Business Review [Last Updated On: January 23rd, 2020] [Originally Added On: January 23rd, 2020]
- Vectorspace AI Datasets are Now Available to Power Machine Learning (ML) and Artificial Intelligence (AI) Systems in Collaboration with Elastic -... [Last Updated On: January 23rd, 2020] [Originally Added On: January 23rd, 2020]
- What is Machine Learning? | Types of Machine Learning ... [Last Updated On: January 23rd, 2020] [Originally Added On: January 23rd, 2020]
- How Machine Learning Will Lead to Better Maps - Popular Mechanics [Last Updated On: January 30th, 2020] [Originally Added On: January 30th, 2020]
- Jenkins Creator Launches Startup To Speed Software Testing with Machine Learning -- ADTmag - ADT Magazine [Last Updated On: January 30th, 2020] [Originally Added On: January 30th, 2020]
- An Open Source Alternative to AWS SageMaker - Datanami [Last Updated On: January 30th, 2020] [Originally Added On: January 30th, 2020]
- Machine Learning Could Aid Diagnosis of Barrett's Esophagus, Avoid Invasive Testing - Medical Bag [Last Updated On: January 30th, 2020] [Originally Added On: January 30th, 2020]
- OReilly and Formulatedby Unveil the Smart Cities & Mobility Ecosystems Conference - Yahoo Finance [Last Updated On: January 30th, 2020] [Originally Added On: January 30th, 2020]