Large-scale genomic analyses with machine learning uncover predictive patterns associated with fungal … – Nature.com

Anderson, P. K. et al. Emerging infectious diseases of plants: Pathogen pollution, climate change and agrotechnology drivers. Trends Ecol. Evol. 19, 535544. https://doi.org/10.1016/j.tree.2004.07.021 (2004).

Article PubMed Google Scholar

Fisher, M. C. et al. Emerging fungal threats to animal, plant and ecosystem health. Nature 484, 186194 (2012).

Article ADS CAS PubMed Google Scholar

Trumbore, S., Brando, P. & Hartmann, H. Forest health and global change. Science 349, 814818 (2015).

Article ADS CAS PubMed Google Scholar

Allen, E. A. & Humble, L. M. Nonindigenous species introductions: A threat to Canadas forests and forest economy. Can. J. Plant Pathol. 24, 103110 (2002).

Article Google Scholar

Loo, J. A. Ecological impacts of non-indigenous invasive fungi as forest pathogens. Biol. Invasions 11, 8196 (2009).

Article Google Scholar

Roy, B. A. et al. Increasing forest loss worldwide from invasive pests requires new trade regulations. Front. Ecol. Environ. 12, 457465 (2014).

Article Google Scholar

Wingfield, M. J., Brockerhoff, E. G., Wingfield, B. D. & Slippers, B. Planted forest health: The need for a global strategy. Science 349, 832836 (2015).

Article ADS CAS PubMed Google Scholar

Bilodeau, P. et al. Biosurveillance of forest insects: Part IIAdoption of genomic tools by end user communities and barriers to integration. J. Pest Sci. 92, 7182 (2019).

Article Google Scholar

Roe, A. D. et al. Biosurveillance of forest insects: Part IIntegration and application of genomic tools to the surveillance of non-native forest insects. J. Pest Sci. 92, 5170 (2019).

Article Google Scholar

Hamelin, R. C. & Roe, A. D. Genomic biosurveillance of forest invasive alien enemies: A story written in code. Evolut. Appl. 13, 95115 (2020).

Article Google Scholar

Brasier, C. M. The biosecurity threat to the UK and global environment from international trade in plants. Plant Pathol. 57, 792808 (2008).

Article Google Scholar

McTaggart, A. R. et al. Fungal genomics challenges the dogma of name-based biosecurity. PLoS Pathog. 12, e1005475 (2016).

Article PubMed PubMed Central Google Scholar

Howlett, B. J., Lowe, R. G. T., Marcroft, S. J. & van de Wouw, A. P. Evolution of virulence in fungal plant pathogens: Exploiting fungal genomics to control plant disease. Mycologia 107, 441451 (2015).

Article CAS PubMed Google Scholar

Klosterman, S. J., Rollins, J. R., Sudarshana, M. R. & Vinatzer, B. A. Disease management in the genomics eraSummaries of focus issue papers. Phytopathology 106, 10681070 (2016).

Article CAS PubMed Google Scholar

Keri, S. et al. From genomes to forest managementTackling invasive Phytophthora species in the era of genomics. Can. J. Plant Pathol. 42, 129 (2020).

Article Google Scholar

Gardiner, D. M., Rusu, A., Barrett, L., Hunter, G. C. & Kazan, K. Natural gene drives offer potential pathogen control strategies in plants. bioRxiv https://doi.org/10.1101/2020.04.05.026500 (2020).

Article Google Scholar

Oliver, R. P. & Ipcho, S. V. S. Arabidopsis pathology breathes new life into the necrotrophs-vs-biotrophs classification of fungal pathogens. Mol. Plant Pathol. 5, 347352 (2004).

Article CAS PubMed Google Scholar

De Silva, N. I. et al. Mycosphere essays 9: Defining biotrophs and hemibiotrophs. Mycosphere 7, 545559 (2016).

Article Google Scholar

Pandaranayaka, E. P., Frenkel, O., Elad, Y., Prusky, D. & Harel, A. Network analysis exposes core functions in major lifestyles of fungal and oomycete plant pathogens. BMC Genom. 20, 1020 (2019).

Article CAS Google Scholar

Hane, J. K., Paxman, J., Jones, D. A. B., Oliver, R. P. & de Wit, P. CATAStrophy, a genome-informed trophic classification of filamentous plant pathogensHow many different types of filamentous plant pathogens are there?. Front. Microbiol. 10, 3088 (2020).

Article PubMed PubMed Central Google Scholar

Haridas, S. et al. 101 Dothideomycetes genomes: A test case for predicting lifestyles and emergence of pathogens. Stud. Mycol. https://doi.org/10.1016/j.simyco.2020.01.003 (2020).

Article PubMed PubMed Central Google Scholar

Amos, B. et al. VEuPathDB: The eukaryotic pathogen, vector and host bioinformatics resource center. Nucleic Acids Res. 50, D898D911 (2022).

Article CAS PubMed Google Scholar

Howe, K. L. et al. Ensembl genomes 2020Enabling non-vertebrate genomic research. Nucleic Acids Res. 48, D689D695 (2020).

Article CAS PubMed Google Scholar

OLeary, N. A. et al. Reference sequence (RefSeq) database at NCBI: Current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 44, D733-745 (2016).

Article PubMed Google Scholar

Grigoriev, I. V. et al. MycoCosm portal: Gearing up for 1000 fungal genomes. Nucleic Acids Res. 42, D699D704 (2014).

Article CAS PubMed Google Scholar

Almsi, . et al. Comparative genomics reveals unique wood-decay strategies and fruiting body development in the Schizophyllaceae. New Phytol. 224, 902915 (2019).

Article PubMed Google Scholar

Knapp, D. G. et al. Comparative genomics provides insights into the lifestyle and reveals functional heterogeneity of dark septate endophytic fungi. Sci. Rep. 8, 6321 (2018).

Article ADS PubMed PubMed Central Google Scholar

Kohler, A. et al. Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nat. Genet. 47, 410415 (2015).

Article CAS PubMed Google Scholar

Miyauchi, S. et al. Large-scale genome sequencing of mycorrhizal fungi provides insights into the early evolution of symbiotic traits. Nat. Commun. 11, 5125 (2020).

Article ADS CAS PubMed PubMed Central Google Scholar

Gan, P. et al. Genus-wide comparative genome analyses of Colletotrichum species reveal specific gene family losses and gains during adaptation to specific infection lifestyles. Genome Biol. Evol. 8, 14671481 (2016).

Article PubMed PubMed Central Google Scholar

Carb, M., Moraga, J., Cantoral, J. M., Collado, I. G. & Garrido, C. Recent approaches on the genomic analysis of the phytopathogenic fungus Colletotrichum spp. Phytochem. Rev. https://doi.org/10.1007/s11101-019-09608-0 (2019).

Article Google Scholar

Krishnan, P., Ma, X., McDonald, B. A. & Brunner, P. C. Widespread signatures of selection for secreted peptidases in a fungal plant pathogen. BMC Evolut. Biol. 18, 7 (2018).

Article Google Scholar

Roy, A., Jayaprakash, A., Raja Rajeswary, T., Annamalai, A. & Lakshmi, P. T. V. Genome-wide annotation, comparison and functional genomics of carbohydrate-active enzymes in legumes infecting Fusarium oxysporum formae speciales. Mycology 11, 5670 (2020).

Article CAS PubMed PubMed Central Google Scholar

Ohm, R. A. et al. Diverse lifestyles and strategies of plant pathogenesis encoded in the genomes of eighteen Dothideomycetes fungi. PLoS Pathog. 8, e1003037 (2012).

Article CAS PubMed PubMed Central Google Scholar

Adhikari, B. N. et al. Comparative genomics reveals insight into virulence strategies of plant pathogenic oomycetes. PLoS One 8, e75072 (2013).

Article ADS CAS PubMed PubMed Central Google Scholar

de Bary, A. Comparative Morphology and Biology of the Fungi, Mycetozoa and Bacteria (Clarendon Press, 1887).

Book Google Scholar

Thrower, L. B. Terminology for plant parasites. J. Phytopathol. 56, 258259 (1966).

Article Google Scholar

Lewis, D. H. Concepts in fungal nutrition and the origin of biotrophy. Biol. Rev. 48, 261277 (1973).

Article Google Scholar

Perfect, S. E. & Green, J. R. Infection structures of biotrophic and hemibiotrophic fungal plant pathogens. Mol. Plant Pathol. 2, 101108 (2001).

Article CAS PubMed Google Scholar

Newton, A. C., Fitt, B. D. L., Atkins, S. D., Walters, D. R. & Daniell, T. J. Pathogenesis, parasitism and mutualism in the trophic space of microbeplant interactions. Trends Microbiol. 18, 365373 (2010).

Article CAS PubMed Google Scholar

Taylor, J. W. & Berbee, M. L. Dating divergences in the fungal tree of life: Review and new analyses. Mycologia 98, 838849 (2006).

Article PubMed Google Scholar

Berbee, M. L. & Taylor, J. W. Dating the molecular clock in fungiHow close are we?. Fungal Biol. Rev. 24, 116 (2010).

Article Google Scholar

Kabbage, M., Yarden, O. & Dickman, M. B. Pathogenic attributes of Sclerotinia sclerotiorum: Switching from a biotrophic to necrotrophic lifestyle. Plant Sci. 233, 5360 (2015).

Article CAS PubMed Google Scholar

Kuo, H.-C. et al. Secret lifestyles of Neurospora crassa. Sci. Rep. 4, 5135 (2015).

Article Google Scholar

Knogge, W. Fungal infection of plants. Plant Cell 8, 17111722 (1996).

Article CAS PubMed PubMed Central Google Scholar

Hmaty, K., Cherk, C. & Somerville, S. Hostpathogen warfare at the plant cell wall. Curr. Opin. Plant Biol. 12, 406413 (2009).

Article PubMed Google Scholar

Kubicek, C. P., Starr, T. L. & Glass, N. L. Plant cell wall-degrading enzymes and their secretion in plant-pathogenic fungi. Annu. Rev. Phytopathol. 52, 427451 (2014).

Article PubMed Google Scholar

Martinez, D. et al. Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat. Biotechnol. 26, 553560 (2008).

Article CAS PubMed Google Scholar

King, B. C. et al. Arsenal of plant cell wall degrading enzymes reflects host preference among plant pathogenic fungi. Biotechnol. Biofuels 4, 4 (2011).

Article CAS PubMed PubMed Central Google Scholar

Zhao, Z., Liu, H., Wang, C. & Xu, J.-R. Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi. BMC Genom. 14, 274 (2013).

Article CAS Google Scholar

Read more from the original source:
Large-scale genomic analyses with machine learning uncover predictive patterns associated with fungal ... - Nature.com

Related Posts

Comments are closed.