In recent years, connected devices and the Internet of Things (IoT) have become omnipresent in our everyday lives, be it in our homes and cars or at our workplace. Many of these small devices are connected to a cloud servicenearly everyone with a smartphone or laptop uses cloud-based services today, whether actively or through an automated backup service, for example.
However, a new paradigm known as "edge intelligence" is quickly gaining traction in technologys fast-changing landscape. This article introduces cloud-based intelligence, edge intelligence, and possible use-cases for professional users to make machine learning accessible for all.
Cloud computing, simply put, is the availability of remote computational resources whenever a client needs them.
For public cloud services, the cloud service provider is responsible for managing the hardware and ensuring that the service's availability is up to a certain standard and customer expectations. The customers of cloud services pay for what they use, and the employment of such services is generally only viable for large-scale operations.
On the other hand, edge computing happens somewhere between the cloud and the clients network.
While the definition of where exactly edge nodes sit may vary from application to application, they are generally close to the local network. These computational nodes provide services such as filtering and buffering data, and they help increase privacy, provide increased reliability, and reduce cloud-service costs and latency.
Recently, its become more common for AI and machine learning to complement edge-computing nodes and help decide what data is relevant and should be uploaded to the cloud for deeper analysis.
Machine learning (ML) is a broad scientific field, but in recent times, neural networks (often abbreviated to NN) have gained the most attention when discussing machine learning algorithms.
Multiclass or complex ML applications such as object tracking and surveillance, automatic speech recognition, and multi-face detection typically require NNs. Many scientists have worked hard to improve and optimize NN algorithms in the last decade to allow them to run on devices with limited computational resources, which has helped accelerate the edge-computing paradigms popularity and practicability.
One such algorithm is MobileNet, which is an image classification algorithm developed by Google. This project demonstrates that highly accurate neural networks can indeed run on devices with significantly restricted computational power.
Until recently, machine learning was primarily meant for data-science experts with a deep understanding of ML and deep learning applications. Typically, the development tools and software suites were immature and challenging to use.
Machine learning and edge computing are expanding rapidly, and the interest in these fields steadily grows every year. According to current research, 98% of edge devices will use machine learning by 2025. This percentage translates to about 18-25 billion devices that the researchers expect to have machine learning capabilities.
In general, machine learning at the edge opens doors for a broad spectrum of applications ranging from computer vision, speech analysis, and video processing to sequence analysis.
Some concrete examples for possible applications are intelligent door locks combined with a camera. These devices could automatically detect a person wanting access to a room and allow the person entry when appropriate.
Due to the previously discussed optimizations and performance improvements of neural network algorithms, many ML applications can now run on embedded devices powered by crossover MCUs such as the i.MX RT1170. With its two processing cores (a 1GHz Arm Cortex M7 and a 400 MHz Arm Cortex-M4 core), developers can choose to run compatible NN implementations with real-time constraints in mind.
Due to its dual-core design, the i.MX RT1170 also allows the execution of multiple ML models in parallel. The additional built-in crypto engines, advanced security features, and graphics and multimedia capabilities make the i.MX RT1170 suitable for a wide range of applications. Some examples include driver distraction detection, smart light switches, intelligent locks, fleet management, and many more.
The i.MX 8M Plus is a family of applications processors that focuses on ML, computer vision, advanced multimedia applications, and industrial automation with high reliability. These devices were designed with the needs of smart devices and Industry 4.0 applications in mind and come equipped with a dedicated NPU (neural processing unit) operating at up to 2.3 TOPS and up to four Arm Cortex A53 processor cores.
Built-in image signal processors allow developers to utilize either two HD camera sensors or a single 4K camera. These features make the i.MX 8M Plus family of devices viable for applications such as facial recognition, object detection, and other ML tasks. Besides that, devices of the i.MX 8M Plus family come with advanced 2D and 3D graphics acceleration capabilities, multimedia features such as video encode and decode support including H.265), and 8 PDM microphone inputs.
An additional low-power 800 MHz Arm Cortex M7 core complements the package. This dedicated core serves real-time industrial applications that require robust networking features such as CAN FD support and Gigabit Ethernet communication with TSN capabilities.
With new devices comes the need for an easy-to-use, efficient, and capable development ecosystem that enables developers to build modern ML systems. NXPs comprehensive eIQ ML software development environment is designed to assist developers in creating ML-based applications.
The eIQ tools environment includes inference engines, neural network compilers, and optimized libraries to enable working with ML algorithms on NXP microcontrollers, i.MX RT crossover MCUs, and the i.MX family of SoCs. The needed ML technologies are accessible to developers through NXPs SDKs for the MCUXpresso IDE and Yocto BSP.
The upcoming eIQ Toolkit adds an accessible GUI; eIQ Portal and workflow, enabling developers of all experience levels to create ML applications.
Developers can choose to follow a process called BYOM (bring your own model), where developers build their trained models using cloud-based tools and then import them to the eIQ Toolkit software environment. Then, all thats left to do is select the appropriate inference engine in eIQ. Or the developer can use the eIQ Portal GUI-based tools or command line interface to import and curate datasets and use the BYOD (bring your own data) workflow to train their model within the eIQ Toolkit.
Most modern-day consumers are familiar with cloud computing. However, in recent years a new paradigm known as edge computing has seen a rise in interest.
With this paradigm, not all data gets uploaded to the cloud. Instead, edge nodes, located somewhere between the end-user and the cloud, provide additional processing power. This paradigm has many benefits, such as increased security and privacy, reduced data transfer to the cloud, and lower latency.
More recently, developers often enhance these edge nodes with machine learning capabilities. Doing so helps to categorize collected data and filter out unwanted results and irrelevant information. Adding ML to the edge enables many applications such as driver distraction detection, smart light switches, intelligent locks, fleet management, surveillance and categorization, and many more.
ML applications have traditionally been exclusively designed by data-science experts with a deep understanding of ML and deep learning applications. NXP provides a range of inexpensive yet powerful devices, such as the i.MX RT1170 and the i.MX 8M Plus, and the eIQ ML software development environment to help open ML up to any designer. This hardware and software aims to allow developers to build future-proof ML applications at any level of experience, regardless of how small or large the project will be.
Industry Articles are a form of content that allows industry partners to share useful news, messages, and technology with All About Circuits readers in a way editorial content is not well suited to. All Industry Articles are subject to strict editorial guidelines with the intention of offering readers useful news, technical expertise, or stories. The viewpoints and opinions expressed in Industry Articles are those of the partner and not necessarily those of All About Circuits or its writers.
Read the original:
Increasing the Accessibility of Machine Learning at the Edge - Industry Articles - All About Circuits
- What Is Machine Learning? | How It Works, Techniques ... [Last Updated On: September 5th, 2019] [Originally Added On: September 5th, 2019]
- Start Here with Machine Learning [Last Updated On: September 22nd, 2019] [Originally Added On: September 22nd, 2019]
- What is Machine Learning? | Emerj [Last Updated On: October 1st, 2019] [Originally Added On: October 1st, 2019]
- Microsoft Azure Machine Learning Studio [Last Updated On: October 1st, 2019] [Originally Added On: October 1st, 2019]
- Machine Learning Basics | What Is Machine Learning? | Introduction To Machine Learning | Simplilearn [Last Updated On: October 1st, 2019] [Originally Added On: October 1st, 2019]
- What is Machine Learning? A definition - Expert System [Last Updated On: October 2nd, 2019] [Originally Added On: October 2nd, 2019]
- Machine Learning | Stanford Online [Last Updated On: October 2nd, 2019] [Originally Added On: October 2nd, 2019]
- How to Learn Machine Learning, The Self-Starter Way [Last Updated On: October 17th, 2019] [Originally Added On: October 17th, 2019]
- definition - What is machine learning? - Stack Overflow [Last Updated On: November 3rd, 2019] [Originally Added On: November 3rd, 2019]
- Artificial Intelligence vs. Machine Learning vs. Deep ... [Last Updated On: November 3rd, 2019] [Originally Added On: November 3rd, 2019]
- Machine Learning in R for beginners (article) - DataCamp [Last Updated On: November 3rd, 2019] [Originally Added On: November 3rd, 2019]
- Machine Learning | Udacity [Last Updated On: November 3rd, 2019] [Originally Added On: November 3rd, 2019]
- Machine Learning Artificial Intelligence | McAfee [Last Updated On: November 3rd, 2019] [Originally Added On: November 3rd, 2019]
- Machine Learning [Last Updated On: November 3rd, 2019] [Originally Added On: November 3rd, 2019]
- AI-based ML algorithms could increase detection of undiagnosed AF - Cardiac Rhythm News [Last Updated On: November 19th, 2019] [Originally Added On: November 19th, 2019]
- The Cerebras CS-1 computes deep learning AI problems by being bigger, bigger, and bigger than any other chip - TechCrunch [Last Updated On: November 19th, 2019] [Originally Added On: November 19th, 2019]
- Can the planet really afford the exorbitant power demands of machine learning? - The Guardian [Last Updated On: November 19th, 2019] [Originally Added On: November 19th, 2019]
- New InfiniteIO Platform Reduces Latency and Accelerates Performance for Machine Learning, AI and Analytics - Business Wire [Last Updated On: November 19th, 2019] [Originally Added On: November 19th, 2019]
- How to Use Machine Learning to Drive Real Value - eWeek [Last Updated On: November 19th, 2019] [Originally Added On: November 19th, 2019]
- Machine Learning As A Service Market to Soar from End-use Industries and Push Revenues in the 2025 - Downey Magazine [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Rad AI Raises $4M to Automate Repetitive Tasks for Radiologists Through Machine Learning - - HIT Consultant [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Machine Learning Improves Performance of the Advanced Light Source - Machine Design [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Synthetic Data: The Diamonds of Machine Learning - TDWI [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- The transformation of healthcare with AI and machine learning - ITProPortal [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Workday talks machine learning and the future of human capital management - ZDNet [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Machine Learning with R, Third Edition - Free Sample Chapters - Neowin [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Verification In The Era Of Autonomous Driving, Artificial Intelligence And Machine Learning - SemiEngineering [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Podcast: How artificial intelligence, machine learning can help us realize the value of all that genetic data we're collecting - Genetic Literacy... [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- The Real Reason Your School Avoids Machine Learning - The Tech Edvocate [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- Siri, Tell Fido To Stop Barking: What's Machine Learning, And What's The Future Of It? - 90.5 WESA [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- Microsoft reveals how it caught mutating Monero mining malware with machine learning - The Next Web [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- The role of machine learning in IT service management - ITProPortal [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- Global Director of Tech Exploration Discusses Artificial Intelligence and Machine Learning at Anheuser-Busch InBev - Seton Hall University News &... [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- The 10 Hottest AI And Machine Learning Startups Of 2019 - CRN: The Biggest Tech News For Partners And The IT Channel [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- Startup jobs of the week: Marketing Communications Specialist, Oracle Architect, Machine Learning Scientist - BetaKit [Last Updated On: November 30th, 2019] [Originally Added On: November 30th, 2019]
- Here's why machine learning is critical to success for banks of the future - Tech Wire Asia [Last Updated On: December 2nd, 2019] [Originally Added On: December 2nd, 2019]
- 3 questions to ask before investing in machine learning for pop health - Healthcare IT News [Last Updated On: December 8th, 2019] [Originally Added On: December 8th, 2019]
- Machine Learning Answers: If Caterpillar Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 8th, 2019] [Originally Added On: December 8th, 2019]
- Measuring Employee Engagement with A.I. and Machine Learning - Dice Insights [Last Updated On: December 8th, 2019] [Originally Added On: December 8th, 2019]
- Amazon Wants to Teach You Machine Learning Through Music? - Dice Insights [Last Updated On: December 8th, 2019] [Originally Added On: December 8th, 2019]
- Machine Learning Answers: If Nvidia Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 8th, 2019] [Originally Added On: December 8th, 2019]
- AI and machine learning platforms will start to challenge conventional thinking - CRN.in [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Machine Learning Answers: If Twitter Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Machine Learning Answers: If Seagate Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Machine Learning Answers: If BlackBerry Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Amazon Releases A New Tool To Improve Machine Learning Processes - Forbes [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Another free web course to gain machine-learning skills (thanks, Finland), NIST probes 'racist' face-recog and more - The Register [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Kubernetes and containers are the perfect fit for machine learning - JAXenter [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- TinyML as a Service and machine learning at the edge - Ericsson [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- AI and machine learning products - Cloud AI | Google Cloud [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Machine Learning | Blog | Microsoft Azure [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Machine Learning in 2019 Was About Balancing Privacy and Progress - ITPro Today [Last Updated On: December 25th, 2019] [Originally Added On: December 25th, 2019]
- CMSWire's Top 10 AI and Machine Learning Articles of 2019 - CMSWire [Last Updated On: December 25th, 2019] [Originally Added On: December 25th, 2019]
- Here's why digital marketing is as lucrative a career as data science and machine learning - Business Insider India [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- Dell's Latitude 9510 shakes up corporate laptops with 5G, machine learning, and thin bezels - PCWorld [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- Finally, a good use for AI: Machine-learning tool guesstimates how well your code will run on a CPU core - The Register [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- Cloud as the enabler of AI's competitive advantage - Finextra [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- Forget Machine Learning, Constraint Solvers are What the Enterprise Needs - - RTInsights [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- Informed decisions through machine learning will keep it afloat & going - Sea News [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- The Problem with Hiring Algorithms - Machine Learning Times - machine learning & data science news - The Predictive Analytics Times [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- New Program Supports Machine Learning in the Chemical Sciences and Engineering - Newswise [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- AI-System Flags the Under-Vaccinated in Israel - PrecisionVaccinations [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- New Contest: Train All The Things - Hackaday [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- AFTAs 2019: Best New Technology Introduced Over the Last 12 MonthsAI, Machine Learning and AnalyticsActiveViam - www.waterstechnology.com [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Educate Yourself on Machine Learning at this Las Vegas Event - Small Business Trends [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Seton Hall Announces New Courses in Text Mining and Machine Learning - Seton Hall University News & Events [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Looking at the most significant benefits of machine learning for software testing - The Burn-In [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Leveraging AI and Machine Learning to Advance Interoperability in Healthcare - - HIT Consultant [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Adventures With Artificial Intelligence and Machine Learning - Toolbox [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Five Reasons to Go to Machine Learning Week 2020 - Machine Learning Times - machine learning & data science news - The Predictive Analytics Times [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Uncover the Possibilities of AI and Machine Learning With This Bundle - Interesting Engineering [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Learning that Targets Millennial and Generation Z - HR Exchange Network [Last Updated On: January 23rd, 2020] [Originally Added On: January 23rd, 2020]
- Red Hat Survey Shows Hybrid Cloud, AI and Machine Learning are the Focus of Enterprises - Computer Business Review [Last Updated On: January 23rd, 2020] [Originally Added On: January 23rd, 2020]
- Vectorspace AI Datasets are Now Available to Power Machine Learning (ML) and Artificial Intelligence (AI) Systems in Collaboration with Elastic -... [Last Updated On: January 23rd, 2020] [Originally Added On: January 23rd, 2020]
- What is Machine Learning? | Types of Machine Learning ... [Last Updated On: January 23rd, 2020] [Originally Added On: January 23rd, 2020]
- How Machine Learning Will Lead to Better Maps - Popular Mechanics [Last Updated On: January 30th, 2020] [Originally Added On: January 30th, 2020]
- Jenkins Creator Launches Startup To Speed Software Testing with Machine Learning -- ADTmag - ADT Magazine [Last Updated On: January 30th, 2020] [Originally Added On: January 30th, 2020]
- An Open Source Alternative to AWS SageMaker - Datanami [Last Updated On: January 30th, 2020] [Originally Added On: January 30th, 2020]
- Machine Learning Could Aid Diagnosis of Barrett's Esophagus, Avoid Invasive Testing - Medical Bag [Last Updated On: January 30th, 2020] [Originally Added On: January 30th, 2020]
- OReilly and Formulatedby Unveil the Smart Cities & Mobility Ecosystems Conference - Yahoo Finance [Last Updated On: January 30th, 2020] [Originally Added On: January 30th, 2020]