Machine learning for enterprise use is exploding. From improving customer experience to developing products, there's almost no area of the modern business untouched by machine learning.
Machine learning is a pathway to creating artificial intelligence, which in turn is one of the primary drivers of machine learning use in the enterprise. There is some disagreement over the exact nature of the relationship between AI and machine learning. Some see machine learning as a subfield of AI, while others view AI essentially as a subfield of machine learning. In general, AI aims to replicate some aspect of human perception or decision-making, whereas machine learning can be used to enhance or automate virtually any task, not just ones related to human cognition. However you view them, the two concepts are closely linked, and they are feeding off each other's popularity.
The practice of machine learning involves taking data, examining it for patterns and developing some sort of prediction about future outcomes. By feeding an algorithm more data over time, data scientists can sharpen the machine learning model's predictions. From this basic concept, a number of different types of machine learning have developed:
From these four main types of machine learning, enterprises have developed an impressive array of techniques and applications. Everything from relatively simple sales forecasting to today's most cutting-edge AI tools run on machine learning models. This guide to machine learning in the enterprise explores the variety of use cases for machine learning, the challenges to adoption, how to implement machine learning technologies and much more.
Machine learning for enterprise use is accelerating, and not just at the periphery. Increasingly, businesses are putting machine learning applications at the center of their business models. The technology has enabled businesses to perform tasks at a scale previously unachievable, not only generating efficiencies for companies but also new business opportunities, as technology writer Mary Pratt explained in "10 common uses for machine learning in business." The growing use of machine learning in mission-critical business processes is reflected in the range of use cases where it plays an integral role. The following are examples:
These are just some examples, but there are countless more. Any business process that either produces or uses large amounts of data -- particularly structured, labeled data -- is ripe for automation that uses machine learning. Enterprises across all industries have learned this and are working to implement machine learning methods throughout their processes.
It's not hard to see why machine learning has entered so many situations. Enterprises that have adopted machine learning are solving business problems and reaping value from this AI technique. Here are six business benefits:
The question is no longer whether to use machine learning, it's how to operationalize machine learning in ways that return optimal results. That's where things get tricky.
Machine learning is a complicated technology that requires substantial expertise. Unlike some other technology domains, where software is mostly plug and play, machine learning forces the user to think about why they are using it, who is building the tools, what their assumptions are and how the technology is being applied. There are few other technologies that have so many potential points of failure.
The wrong use case is the downfall of many machine learning applications. Sometimes enterprises lead with the technology, looking for ways to implement machine learning, rather than allowing the problem to dictate the solution. When machine learning is shoehorned into a use case, it often fails to deliver results.
The wrong data dooms machine learning models faster than anything. Data is the lifeblood of machine learning. Models only know what they've been shown, so when the data they train on is inaccurate, unorganized or biased in some way, the model's output will be faulty.
Bias frequently hampers machine learning implementations. The many types of bias that can undermine machine implementations generally fall into the two categories. One type happens when data collected to train the algorithm simply doesn't reflect the real world. The data set is inaccurate, incomplete or not diverse enough. Another type of bias stems from the methods used to sample, aggregate, filter and enhance that data. In both cases, the errors can stem from the biases of the data scientists overseeing the training and result in models that are inaccurate and, worse, unfairly affect specific populations of people. In his article "6 ways to reduce different types of bias in machine learning," analyst Ron Schmelzer explained the types of biases that can derail machine learning projects and how to mitigate them.
Black box functionality is one reason why bias is so prevalent in machine learning. Many types of machine learning algorithms -- particularly unsupervised algorithms -- operate in ways that are opaque, or as a "black box," to the developer. A data scientist feeds the algorithm data, the algorithm makes observations of correlations and then produces some sort of output based on these observations. But most models can't explain to the data scientist why they produce the outputs they do. This makes it extremely difficult to detect instances of bias or other failures of the model.
Technical complexity is one of the biggest challenges to enterprise use of machine learning. The basic concept of feeding training data to an algorithm and letting it learn the characteristics of the data set may sound simple enough. But there is a lot of technical complexity under the hood. Algorithms are built around advanced mathematical concepts, and the code that algorithms run on can be difficult to learn. Not all businesses have the technical expertise in house needed to develop effective machine learning applications.
Lack of generalizability prevents machine learning from scaling to new use cases in most enterprises. Machine learning applications only know what they've been explicitly trained on. This means a model can't take something it learned about one area and apply it to another, the way a human would be able to. Algorithms need to be trained from scratch for every new use case.
To learn more about machine learning, here is a list of nine books ranging from a concise introduction for beginners to advanced texts on cutting-edge techniques by AI's leading experts.
Implementing machine learning is a multistep process requiring input from many types of experts. Here is an outline of the process in six steps.
The management and maintenance of machine learning applications in the enterprise is one area that's sometimes given short shrift, but it can be what makes or breaks use cases.
The basic functionality of machine learning depends on models learning trends -- such as customer behavior, stock performance and inventory demand -- and projecting them to the future to inform decisions. However, underlying trends are constantly shifting, sometimes slightly, sometimes substantially. This is called concept drift, and if data scientists don't account for it in their models, the model's projections will eventually be off base.
The way to correct for this is to never view models in production as finished. They demand a constant state of verification, retraining and reworking to ensure they continue to deliver results.
Machine learning operations, or MLOps, is an emerging concept aimed at actively managing this lifecycle. Rather than an ad hoc approach to verifying and retraining when appropriate, MLOps tools put each model on a schedule for development, deployment, verification and retraining. It seeks to standardize these processes, a practice that's becoming more important as enterprises make machine learning a core component of their operations.
When we look to the future of machine learning, one overarching trend predominates. Enterprise adoption will continue to increase, bringing the technology from cutting edge to mainstream.
The trend is already well underway.
A 2019 survey from analyst firm Gartner found that 37% of enterprises have adopted some form of artificial intelligence. That's up from 10% in 2015. At its current trajectory, machine learning is on a path to become a ubiquitous technology in the next few years. In its ranking of the top 10 data and analytics trends for 2020, the analyst firm named "smarter, faster and more responsible AI" as the year's top trend. The report, noting the vital importance of machine learning and other AI techniques in providing insight into the global coronavirus pandemic, predicted that by 2024, 75% of organizations will have shifted from piloting to operationalizing AI. As a result of high rates of adoption of machine learning in the enterprise, the market for machine learning tools is growing rapidly. The analyst firm Research and Markets predicted that the machine learning market will grow to $8.8 billion by 2022, from $1.4 billion in 2017.
The reasons for this are clear. Today's most successful companies, like Amazon, Google and Uber, put machine learning applications at the center of their business models. Rather than viewing machine learning as a nice-to-have technology, industry-leading enterprises are using machine learning and AI technologies as critical to maintaining their competitive edge, as technology writer George Lawton explored in "Learn the business value of AI's various techniques."
Advances in deep learning -- a type of machine learning based on neural networks -- have played a huge role in bringing AI to the fore in the enterprise. Neural networks are relatively common in enterprise applications today. These advanced deep learning techniques enable models to do everything from recognize objects in images to create natural language text for product descriptions and other applications. Today, there are a number of different types of neural networks, which are designed to perform specific jobs. As technology writer David Petersson explained in "CNNs vs. RNNs: How they differ and where they overlap," understanding the uniqueness of different types of algorithms is key to getting the most out of them.
It is now viewed as inevitable that a large amount of knowledge work will be automated. Even some creative fields are being infiltrated by machine learning-driven AI applications. This is raising questions about the future of work. In a world where machines are able to manage customer relations, detect cancer in medical images, conduct legal reviews, drive shipping containers across the country and produce creative assets, what is the role of human workers? Proponents of AI say automation will free people up to pursue more creative activities by eliminating rote tasks. But others worry that an incessant drive for automation will leave little room for human workers.
Enterprises looking to deploy machine learning have no shortage of options. The machine learning space features strong competition between open source tools and software built and supported by traditional vendors. Regardless of whether an enterprise chooses machine learning software from a vendor or open source tool, it is common for applications to be hosted in the cloud computing environments and delivered as a service. There are more vendors and platforms than one article could name, but the following list gives a high-level overview of offerings from some of the bigger players in the field.
A more exhaustive list of vendor offerings can be found in this expert overview of machine learning platforms.
In general, most enterprise machine learning users consider open source tools to be more innovative and powerful. However, there is still a strong case for proprietary tools, as vendors offer training and support that is generally absent from open source offerings. Many of today's vendor tools support use of open source libraries, allowing users to have the best of both worlds.
Read more from the original source:
In-Depth Guide to Machine Learning in the Enterprise
- What Is Machine Learning? | How It Works, Techniques ... [Last Updated On: September 5th, 2019] [Originally Added On: September 5th, 2019]
- Start Here with Machine Learning [Last Updated On: September 22nd, 2019] [Originally Added On: September 22nd, 2019]
- What is Machine Learning? | Emerj [Last Updated On: October 1st, 2019] [Originally Added On: October 1st, 2019]
- Microsoft Azure Machine Learning Studio [Last Updated On: October 1st, 2019] [Originally Added On: October 1st, 2019]
- Machine Learning Basics | What Is Machine Learning? | Introduction To Machine Learning | Simplilearn [Last Updated On: October 1st, 2019] [Originally Added On: October 1st, 2019]
- What is Machine Learning? A definition - Expert System [Last Updated On: October 2nd, 2019] [Originally Added On: October 2nd, 2019]
- Machine Learning | Stanford Online [Last Updated On: October 2nd, 2019] [Originally Added On: October 2nd, 2019]
- How to Learn Machine Learning, The Self-Starter Way [Last Updated On: October 17th, 2019] [Originally Added On: October 17th, 2019]
- definition - What is machine learning? - Stack Overflow [Last Updated On: November 3rd, 2019] [Originally Added On: November 3rd, 2019]
- Artificial Intelligence vs. Machine Learning vs. Deep ... [Last Updated On: November 3rd, 2019] [Originally Added On: November 3rd, 2019]
- Machine Learning in R for beginners (article) - DataCamp [Last Updated On: November 3rd, 2019] [Originally Added On: November 3rd, 2019]
- Machine Learning | Udacity [Last Updated On: November 3rd, 2019] [Originally Added On: November 3rd, 2019]
- Machine Learning Artificial Intelligence | McAfee [Last Updated On: November 3rd, 2019] [Originally Added On: November 3rd, 2019]
- Machine Learning [Last Updated On: November 3rd, 2019] [Originally Added On: November 3rd, 2019]
- AI-based ML algorithms could increase detection of undiagnosed AF - Cardiac Rhythm News [Last Updated On: November 19th, 2019] [Originally Added On: November 19th, 2019]
- The Cerebras CS-1 computes deep learning AI problems by being bigger, bigger, and bigger than any other chip - TechCrunch [Last Updated On: November 19th, 2019] [Originally Added On: November 19th, 2019]
- Can the planet really afford the exorbitant power demands of machine learning? - The Guardian [Last Updated On: November 19th, 2019] [Originally Added On: November 19th, 2019]
- New InfiniteIO Platform Reduces Latency and Accelerates Performance for Machine Learning, AI and Analytics - Business Wire [Last Updated On: November 19th, 2019] [Originally Added On: November 19th, 2019]
- How to Use Machine Learning to Drive Real Value - eWeek [Last Updated On: November 19th, 2019] [Originally Added On: November 19th, 2019]
- Machine Learning As A Service Market to Soar from End-use Industries and Push Revenues in the 2025 - Downey Magazine [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Rad AI Raises $4M to Automate Repetitive Tasks for Radiologists Through Machine Learning - - HIT Consultant [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Machine Learning Improves Performance of the Advanced Light Source - Machine Design [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Synthetic Data: The Diamonds of Machine Learning - TDWI [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- The transformation of healthcare with AI and machine learning - ITProPortal [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Workday talks machine learning and the future of human capital management - ZDNet [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Machine Learning with R, Third Edition - Free Sample Chapters - Neowin [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Verification In The Era Of Autonomous Driving, Artificial Intelligence And Machine Learning - SemiEngineering [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Podcast: How artificial intelligence, machine learning can help us realize the value of all that genetic data we're collecting - Genetic Literacy... [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- The Real Reason Your School Avoids Machine Learning - The Tech Edvocate [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- Siri, Tell Fido To Stop Barking: What's Machine Learning, And What's The Future Of It? - 90.5 WESA [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- Microsoft reveals how it caught mutating Monero mining malware with machine learning - The Next Web [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- The role of machine learning in IT service management - ITProPortal [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- Global Director of Tech Exploration Discusses Artificial Intelligence and Machine Learning at Anheuser-Busch InBev - Seton Hall University News &... [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- The 10 Hottest AI And Machine Learning Startups Of 2019 - CRN: The Biggest Tech News For Partners And The IT Channel [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- Startup jobs of the week: Marketing Communications Specialist, Oracle Architect, Machine Learning Scientist - BetaKit [Last Updated On: November 30th, 2019] [Originally Added On: November 30th, 2019]
- Here's why machine learning is critical to success for banks of the future - Tech Wire Asia [Last Updated On: December 2nd, 2019] [Originally Added On: December 2nd, 2019]
- 3 questions to ask before investing in machine learning for pop health - Healthcare IT News [Last Updated On: December 8th, 2019] [Originally Added On: December 8th, 2019]
- Machine Learning Answers: If Caterpillar Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 8th, 2019] [Originally Added On: December 8th, 2019]
- Measuring Employee Engagement with A.I. and Machine Learning - Dice Insights [Last Updated On: December 8th, 2019] [Originally Added On: December 8th, 2019]
- Amazon Wants to Teach You Machine Learning Through Music? - Dice Insights [Last Updated On: December 8th, 2019] [Originally Added On: December 8th, 2019]
- Machine Learning Answers: If Nvidia Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 8th, 2019] [Originally Added On: December 8th, 2019]
- AI and machine learning platforms will start to challenge conventional thinking - CRN.in [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Machine Learning Answers: If Twitter Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Machine Learning Answers: If Seagate Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Machine Learning Answers: If BlackBerry Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Amazon Releases A New Tool To Improve Machine Learning Processes - Forbes [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Another free web course to gain machine-learning skills (thanks, Finland), NIST probes 'racist' face-recog and more - The Register [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Kubernetes and containers are the perfect fit for machine learning - JAXenter [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- TinyML as a Service and machine learning at the edge - Ericsson [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- AI and machine learning products - Cloud AI | Google Cloud [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Machine Learning | Blog | Microsoft Azure [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Machine Learning in 2019 Was About Balancing Privacy and Progress - ITPro Today [Last Updated On: December 25th, 2019] [Originally Added On: December 25th, 2019]
- CMSWire's Top 10 AI and Machine Learning Articles of 2019 - CMSWire [Last Updated On: December 25th, 2019] [Originally Added On: December 25th, 2019]
- Here's why digital marketing is as lucrative a career as data science and machine learning - Business Insider India [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- Dell's Latitude 9510 shakes up corporate laptops with 5G, machine learning, and thin bezels - PCWorld [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- Finally, a good use for AI: Machine-learning tool guesstimates how well your code will run on a CPU core - The Register [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- Cloud as the enabler of AI's competitive advantage - Finextra [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- Forget Machine Learning, Constraint Solvers are What the Enterprise Needs - - RTInsights [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- Informed decisions through machine learning will keep it afloat & going - Sea News [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- The Problem with Hiring Algorithms - Machine Learning Times - machine learning & data science news - The Predictive Analytics Times [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- New Program Supports Machine Learning in the Chemical Sciences and Engineering - Newswise [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- AI-System Flags the Under-Vaccinated in Israel - PrecisionVaccinations [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- New Contest: Train All The Things - Hackaday [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- AFTAs 2019: Best New Technology Introduced Over the Last 12 MonthsAI, Machine Learning and AnalyticsActiveViam - www.waterstechnology.com [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Educate Yourself on Machine Learning at this Las Vegas Event - Small Business Trends [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Seton Hall Announces New Courses in Text Mining and Machine Learning - Seton Hall University News & Events [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Looking at the most significant benefits of machine learning for software testing - The Burn-In [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Leveraging AI and Machine Learning to Advance Interoperability in Healthcare - - HIT Consultant [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Adventures With Artificial Intelligence and Machine Learning - Toolbox [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Five Reasons to Go to Machine Learning Week 2020 - Machine Learning Times - machine learning & data science news - The Predictive Analytics Times [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Uncover the Possibilities of AI and Machine Learning With This Bundle - Interesting Engineering [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Learning that Targets Millennial and Generation Z - HR Exchange Network [Last Updated On: January 23rd, 2020] [Originally Added On: January 23rd, 2020]
- Red Hat Survey Shows Hybrid Cloud, AI and Machine Learning are the Focus of Enterprises - Computer Business Review [Last Updated On: January 23rd, 2020] [Originally Added On: January 23rd, 2020]
- Vectorspace AI Datasets are Now Available to Power Machine Learning (ML) and Artificial Intelligence (AI) Systems in Collaboration with Elastic -... [Last Updated On: January 23rd, 2020] [Originally Added On: January 23rd, 2020]
- What is Machine Learning? | Types of Machine Learning ... [Last Updated On: January 23rd, 2020] [Originally Added On: January 23rd, 2020]
- How Machine Learning Will Lead to Better Maps - Popular Mechanics [Last Updated On: January 30th, 2020] [Originally Added On: January 30th, 2020]
- Jenkins Creator Launches Startup To Speed Software Testing with Machine Learning -- ADTmag - ADT Magazine [Last Updated On: January 30th, 2020] [Originally Added On: January 30th, 2020]
- An Open Source Alternative to AWS SageMaker - Datanami [Last Updated On: January 30th, 2020] [Originally Added On: January 30th, 2020]
- Machine Learning Could Aid Diagnosis of Barrett's Esophagus, Avoid Invasive Testing - Medical Bag [Last Updated On: January 30th, 2020] [Originally Added On: January 30th, 2020]
- OReilly and Formulatedby Unveil the Smart Cities & Mobility Ecosystems Conference - Yahoo Finance [Last Updated On: January 30th, 2020] [Originally Added On: January 30th, 2020]