I remember the first time I ever tried to learn to code. I was in middle school, and my dad, a programmer himself, pulled open a text editor and typed this on the screen:
Excuse me? I said.
It prints Hello World, he replied.
Whats public? Whats class? Whats static? Whats
Ignore that for now. Its just boilerplate.
But I was pretty freaked out by all that so-called boilerplate I didnt understand, and so I set out to learn what each one of those keywords meant. That turned out to be complicated and boring, and pretty much put the kibosh on my young coder aspirations.
Its immensely easier to learn software development today than it was when I was in high school, thanks to sites likecodecademy.com, the ease of setting up basic development environments, and a generalsway towards teaching high-level, interpreted languageslike Python and Javascript. You can go from knowing nothing about coding to writing your first conditional statements in a browser in just a few minutes. No messy environmental setup, installations, compilers, or boilerplate to deal with you can head straight to the juicy bits.
This is exactly how humans learn best. First, were taught core concepts at a high level, and onlythencan we appreciate and understand under-the-hood details and why they matter. We learn Python,thenC,thenassembly, not the other way around.
Unfortunately, lots of folks who set out to learn Machine Learning today have the same experience I had when I was first introduced to Java. Theyre given all the low-level details up front layer architecture, back-propagation, dropout, etc and come to think ML is really complicated and that maybe they should take a linear algebra class first, and give up.
Thats a shame, because in the very near future, most software developers effectively using Machine Learning arent going to have to think or know about any of that low-level stuff. Just as we (usually) dont write assembly or implement our own TCP stacks or encryption libraries, well come to use ML as a tool and leave the implementation details to a small set of experts. At that point after Machine Learning is democratized developers will need to understand not implementation details but instead best practices in deploying these smart algorithms in the world.
Today, if you want to build a neural network that recognizes your cats face in photos or predicts whether your next Tweet will go viral, youd probably set off to learn eitherTensorFloworPyTorch. These Python-based deep learning libraries are the most popular tools for designing neural networks today, and theyre both under 5 years old.
In its short lifespan, TensorFlow has already become way,waymore user-friendly than it was five years ago. In its early days, you had to understand not only Machine Learning but also distributed computing and deferred graph architectures to be an effective TensorFlow programmer. Even writing a simple print statement was a challenge.
Just earlier this fall, TensorFlow 2.0 officially launched, making the framework significantly more developer-friendly. Heres what a Hello-World-style model looks like in TensorFlow 2.0:
If youve designed neural networks before, the code above is straight-forward and readable. But if you havent or youre just learning, youve probably got some questions. Like, what is Dropout? What are these dense layers, how many do you need and where do you put them? Whatssparse_categorical_crossentropy? TensorFlow 2.0 removes some friction from building models, but it doesnt abstract away designing the actual architecture of those models.
So what will the future of easy-to-use ML tools look like? Its a question that everyone from Google to Amazon to Microsoft and Apple are spending clock cycles trying to answer. Also disclaimer it is whatIspend all my time thinking about as an engineer at Google.
For one, well start to see many more developers using pre-trained models for common tasks, i.e. rather than collecting our own data and training our own neural networks, well just use Googles/Amazons/Microsofts models. Many cloud providers already do something like this. For example, by hitting a Google Cloud REST endpoint, you can use a pre-trained neural networks to:
You can also run pre-trained models on-device, in mobile apps, using tools like GooglesML Kitor ApplesCore ML.
The advantage to using pre-trained models over a model you build yourself in TensorFlow (besides ease-of-use) is that, frankly, you probably cannot personally build a model more accurate than one that Google researchers, training neural networks on a whole Internet of data and tons GPUs andTPUs, could build.
The disadvantage to using pre-trained models is that they solve generic problems, like identifying cats and dogs in images, rather than domain-specific problems, like identifying a defect in a part on an assembly line.
But even when it comes to training custom models for domain-specific tasks, our tools are becoming much more user-friendly.
Screenshot of Teachable Machine, a tool for building vision, gesture, and speech models in the browser.
Googles freeTeachable Machinesite lets users collect data and train models in the browser using a drag-and-drop interface. Earlier this year, MIT released a similarcode-free interfacefor building custom models that runs on touchscreen devices, designed for non-coders like doctors.Microsoftand startups likelobe.aioffer similar solutions. Meanwhile,Google Cloud AutoMLis an automated model-training framework for enterprise-scale workloads.
As ML tools become easier to use, the skills that developers hoping to use this technology (but not become specialists) will change. So if youre trying to plan for where, Wayne-Gretsky-style, the puck is going, what should you study now?
What makes Machine Learning algorithms distinct from standard software is that theyre probabilistic. Even a highly accurate model will be wrong some of the time, which means its not the right solution for lots of problems, especially on its own. Take ML-powered speech-to-text algorithms: it might be okay if occasionally, when you ask Alexa to Turn off the music, she instead sets your alarm for 4 AM. Its not ok if a medical version of Alexa thinks your doctor prescribed you Enulose instead of Adderall.
Understanding when and how models should be used in production is and will always be a nuanced problem. Its especially tricky in cases where:
Take medical imaging. Were globally short on doctors and ML models are oftenmore accuratethan trained physicians at diagnosing disease. But would you want an algorithm to have the last say on whether or not you have cancer? Same thing with models that help judges decide jail sentences.Models can be biased, but so are people.
Understanding when ML makes sense to use as well as how to deploy it properly isnt an easy problem to solve, but its one thats not going away anytime soon.
Machine Learning models are notoriously opaque. Thats why theyre sometimes called black boxes. Its unlikely youll be able to convince your VP to make a major business decision with my neural network told me so as your only proof. Plus, if you dont understand why your model is making the predictions it is, you might not realize its making biased decisions (i.e. denying loans to people from a specific age group or zip code).
Its for this reason that so many players in the ML space are focusing on building Explainable AI features tools that let users more closely examine what features models are using to make predictions. We still havent entirely cracked this problem as an industry, but were making progress. In November, for example, Google launched a suite of explainability tools as well as something calledModel Cards a sort of visual guide for helping users understand the limitations of ML models.
Googles Facial Recognition Model Card shows the limitations of this particular model.
There are a handful of developers good at Machine Learning, a handful of researchers good at neuroscience, and very few folks who fall in that intersection. This is true of almost any sufficiently complex field. The biggest advances well see from ML in the coming years likely wont be from improved mathematical methods but from people with different areas of expertise learning at least enough Machine Learning to apply it to their domains. This is mostly the case in medical imaging, for example, where themost exciting breakthroughs being able to spot pernicious diseases in scans are powered not by new neural network architectures but instead by fairly standard models applied to a novel problem. So if youre a software developer lucky enough to possess additional expertise, youre already ahead of the curve.
This, at least, is whatIwould focus on today if I were starting my AI education from scratch. Meanwhile, I find myself spending less and less time building custom models from scratch in TensorFlow and more and more time using high-level tools like AutoML and AI APIs and focusing on application development.
This article was written by Dale Markowitz, an Applied AI Engineer at Google based in Austin, Texas, where she works on applying machine learning to new fields and industries. She also likes solving her own life problems with AI, and talks about it on YouTube.
Originally posted here:
Hey software developers, youre approaching machine learning the wrong way - The Next Web
- What Is Machine Learning? | How It Works, Techniques ... [Last Updated On: September 5th, 2019] [Originally Added On: September 5th, 2019]
- Start Here with Machine Learning [Last Updated On: September 22nd, 2019] [Originally Added On: September 22nd, 2019]
- What is Machine Learning? | Emerj [Last Updated On: October 1st, 2019] [Originally Added On: October 1st, 2019]
- Microsoft Azure Machine Learning Studio [Last Updated On: October 1st, 2019] [Originally Added On: October 1st, 2019]
- Machine Learning Basics | What Is Machine Learning? | Introduction To Machine Learning | Simplilearn [Last Updated On: October 1st, 2019] [Originally Added On: October 1st, 2019]
- What is Machine Learning? A definition - Expert System [Last Updated On: October 2nd, 2019] [Originally Added On: October 2nd, 2019]
- Machine Learning | Stanford Online [Last Updated On: October 2nd, 2019] [Originally Added On: October 2nd, 2019]
- How to Learn Machine Learning, The Self-Starter Way [Last Updated On: October 17th, 2019] [Originally Added On: October 17th, 2019]
- definition - What is machine learning? - Stack Overflow [Last Updated On: November 3rd, 2019] [Originally Added On: November 3rd, 2019]
- Artificial Intelligence vs. Machine Learning vs. Deep ... [Last Updated On: November 3rd, 2019] [Originally Added On: November 3rd, 2019]
- Machine Learning in R for beginners (article) - DataCamp [Last Updated On: November 3rd, 2019] [Originally Added On: November 3rd, 2019]
- Machine Learning | Udacity [Last Updated On: November 3rd, 2019] [Originally Added On: November 3rd, 2019]
- Machine Learning Artificial Intelligence | McAfee [Last Updated On: November 3rd, 2019] [Originally Added On: November 3rd, 2019]
- Machine Learning [Last Updated On: November 3rd, 2019] [Originally Added On: November 3rd, 2019]
- AI-based ML algorithms could increase detection of undiagnosed AF - Cardiac Rhythm News [Last Updated On: November 19th, 2019] [Originally Added On: November 19th, 2019]
- The Cerebras CS-1 computes deep learning AI problems by being bigger, bigger, and bigger than any other chip - TechCrunch [Last Updated On: November 19th, 2019] [Originally Added On: November 19th, 2019]
- Can the planet really afford the exorbitant power demands of machine learning? - The Guardian [Last Updated On: November 19th, 2019] [Originally Added On: November 19th, 2019]
- New InfiniteIO Platform Reduces Latency and Accelerates Performance for Machine Learning, AI and Analytics - Business Wire [Last Updated On: November 19th, 2019] [Originally Added On: November 19th, 2019]
- How to Use Machine Learning to Drive Real Value - eWeek [Last Updated On: November 19th, 2019] [Originally Added On: November 19th, 2019]
- Machine Learning As A Service Market to Soar from End-use Industries and Push Revenues in the 2025 - Downey Magazine [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Rad AI Raises $4M to Automate Repetitive Tasks for Radiologists Through Machine Learning - - HIT Consultant [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Machine Learning Improves Performance of the Advanced Light Source - Machine Design [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Synthetic Data: The Diamonds of Machine Learning - TDWI [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- The transformation of healthcare with AI and machine learning - ITProPortal [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Workday talks machine learning and the future of human capital management - ZDNet [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Machine Learning with R, Third Edition - Free Sample Chapters - Neowin [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Verification In The Era Of Autonomous Driving, Artificial Intelligence And Machine Learning - SemiEngineering [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Podcast: How artificial intelligence, machine learning can help us realize the value of all that genetic data we're collecting - Genetic Literacy... [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- The Real Reason Your School Avoids Machine Learning - The Tech Edvocate [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- Siri, Tell Fido To Stop Barking: What's Machine Learning, And What's The Future Of It? - 90.5 WESA [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- Microsoft reveals how it caught mutating Monero mining malware with machine learning - The Next Web [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- The role of machine learning in IT service management - ITProPortal [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- Global Director of Tech Exploration Discusses Artificial Intelligence and Machine Learning at Anheuser-Busch InBev - Seton Hall University News &... [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- The 10 Hottest AI And Machine Learning Startups Of 2019 - CRN: The Biggest Tech News For Partners And The IT Channel [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- Startup jobs of the week: Marketing Communications Specialist, Oracle Architect, Machine Learning Scientist - BetaKit [Last Updated On: November 30th, 2019] [Originally Added On: November 30th, 2019]
- Here's why machine learning is critical to success for banks of the future - Tech Wire Asia [Last Updated On: December 2nd, 2019] [Originally Added On: December 2nd, 2019]
- 3 questions to ask before investing in machine learning for pop health - Healthcare IT News [Last Updated On: December 8th, 2019] [Originally Added On: December 8th, 2019]
- Machine Learning Answers: If Caterpillar Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 8th, 2019] [Originally Added On: December 8th, 2019]
- Measuring Employee Engagement with A.I. and Machine Learning - Dice Insights [Last Updated On: December 8th, 2019] [Originally Added On: December 8th, 2019]
- Amazon Wants to Teach You Machine Learning Through Music? - Dice Insights [Last Updated On: December 8th, 2019] [Originally Added On: December 8th, 2019]
- Machine Learning Answers: If Nvidia Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 8th, 2019] [Originally Added On: December 8th, 2019]
- AI and machine learning platforms will start to challenge conventional thinking - CRN.in [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Machine Learning Answers: If Twitter Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Machine Learning Answers: If Seagate Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Machine Learning Answers: If BlackBerry Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Amazon Releases A New Tool To Improve Machine Learning Processes - Forbes [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Another free web course to gain machine-learning skills (thanks, Finland), NIST probes 'racist' face-recog and more - The Register [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Kubernetes and containers are the perfect fit for machine learning - JAXenter [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- TinyML as a Service and machine learning at the edge - Ericsson [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- AI and machine learning products - Cloud AI | Google Cloud [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Machine Learning | Blog | Microsoft Azure [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Machine Learning in 2019 Was About Balancing Privacy and Progress - ITPro Today [Last Updated On: December 25th, 2019] [Originally Added On: December 25th, 2019]
- CMSWire's Top 10 AI and Machine Learning Articles of 2019 - CMSWire [Last Updated On: December 25th, 2019] [Originally Added On: December 25th, 2019]
- Here's why digital marketing is as lucrative a career as data science and machine learning - Business Insider India [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- Dell's Latitude 9510 shakes up corporate laptops with 5G, machine learning, and thin bezels - PCWorld [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- Finally, a good use for AI: Machine-learning tool guesstimates how well your code will run on a CPU core - The Register [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- Cloud as the enabler of AI's competitive advantage - Finextra [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- Forget Machine Learning, Constraint Solvers are What the Enterprise Needs - - RTInsights [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- Informed decisions through machine learning will keep it afloat & going - Sea News [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- The Problem with Hiring Algorithms - Machine Learning Times - machine learning & data science news - The Predictive Analytics Times [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- New Program Supports Machine Learning in the Chemical Sciences and Engineering - Newswise [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- AI-System Flags the Under-Vaccinated in Israel - PrecisionVaccinations [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- New Contest: Train All The Things - Hackaday [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- AFTAs 2019: Best New Technology Introduced Over the Last 12 MonthsAI, Machine Learning and AnalyticsActiveViam - www.waterstechnology.com [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Educate Yourself on Machine Learning at this Las Vegas Event - Small Business Trends [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Seton Hall Announces New Courses in Text Mining and Machine Learning - Seton Hall University News & Events [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Looking at the most significant benefits of machine learning for software testing - The Burn-In [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Leveraging AI and Machine Learning to Advance Interoperability in Healthcare - - HIT Consultant [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Adventures With Artificial Intelligence and Machine Learning - Toolbox [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Five Reasons to Go to Machine Learning Week 2020 - Machine Learning Times - machine learning & data science news - The Predictive Analytics Times [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Uncover the Possibilities of AI and Machine Learning With This Bundle - Interesting Engineering [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Learning that Targets Millennial and Generation Z - HR Exchange Network [Last Updated On: January 23rd, 2020] [Originally Added On: January 23rd, 2020]
- Red Hat Survey Shows Hybrid Cloud, AI and Machine Learning are the Focus of Enterprises - Computer Business Review [Last Updated On: January 23rd, 2020] [Originally Added On: January 23rd, 2020]
- Vectorspace AI Datasets are Now Available to Power Machine Learning (ML) and Artificial Intelligence (AI) Systems in Collaboration with Elastic -... [Last Updated On: January 23rd, 2020] [Originally Added On: January 23rd, 2020]
- What is Machine Learning? | Types of Machine Learning ... [Last Updated On: January 23rd, 2020] [Originally Added On: January 23rd, 2020]
- How Machine Learning Will Lead to Better Maps - Popular Mechanics [Last Updated On: January 30th, 2020] [Originally Added On: January 30th, 2020]
- Jenkins Creator Launches Startup To Speed Software Testing with Machine Learning -- ADTmag - ADT Magazine [Last Updated On: January 30th, 2020] [Originally Added On: January 30th, 2020]
- An Open Source Alternative to AWS SageMaker - Datanami [Last Updated On: January 30th, 2020] [Originally Added On: January 30th, 2020]
- Machine Learning Could Aid Diagnosis of Barrett's Esophagus, Avoid Invasive Testing - Medical Bag [Last Updated On: January 30th, 2020] [Originally Added On: January 30th, 2020]
- OReilly and Formulatedby Unveil the Smart Cities & Mobility Ecosystems Conference - Yahoo Finance [Last Updated On: January 30th, 2020] [Originally Added On: January 30th, 2020]