eWEEK content and product recommendations are editorially independent. We may make money when you click on links to our partners. Learn More.
Generative artificial intelligence (AI) is valued for its ability to create new content, including text, images, video, and music. It uses AI algorithms to analyze patterns in datasets to mimic style or structure to replicate different types of content, and can be used to create deep-fake videos and voice messages.
Generative AI is a subset of artificial intelligence, which also includes a broad range of technologies that enable machines to perform tasks that once required human intelligence and judgment. Its often used to build systems with the cognitive capacity to mine data, and it continuously boosts its performance over the course of repeated events. Heres what you need to know about the benefits and logistics of using AI and generative AI as well as the ethical concerns of which to be aware.
Both generative AI and artificial intelligence,sometimes called traditional AI, use machine learning algorithms to obtain their results. However, they have different goals and purposes. Generative AI is intended to create new content, while AI goes much broader and deeperin essence, to wherever the algorithm coder wants to take it. AIs possible deployments include better decision-making, removing the tedium from repetitive tasks, or spotting anomalies and issuing alerts for cybersecurity. The following summary spells out the common differences between generative AI and AI:
To fully understand the relationship between generative AI and AI, its necessary to understand each of these technologies at a deeper level.
Generative AI is an open-ended and rapidly evolving form of artificial intelligence. Its major characteristics include the following:
With its ability to use source data for any number of creative tasks, generative AIs use cases range from product design to software development to fraud detection.
Generative AI helps in creating innovative designs that meet specific performance criteria, from prototyping to optimization of design, while minimizing not only material use but also waste. Additionally, generative AI succeeds at creating highly personalized product experiences by analyzing user data to create products that align with the preferences and needs of individual users. This personalization can help with cheating marketing and sales campaigns.
For the creative industries, generative AI can mimic various artistic styles, compose original music and even generate complete pieces of artwork. This application is expanding the horizons of creative expression and is being used by artists, musicians, and other content creators to increase their output.
Generative AI provides the ability to automate code generation, bug fixes, and optimization. This results in more efficient development cycles and higher-quality software. AI tools can also generate synthetic data for training and testing purposes, which plays an important role in developing robust AI applications.
Generative AI-powered chatbots and virtual assistants provide 24/7 assistance, personalize interactions, and handle complex queries. These tools raise customer satisfaction and operational efficiency by automating routine support tasks and offering faster responses than human operators.
In finance and insurance, generative AI is used to detect fraud and manage risk. It analyzes transaction patterns and identifies anomalies, then helps in creating detailed reports and summaries that aid in decision-making, thereby enhancing the overall security and reliability of financial operations.
Based on the significant advancements that keep enhancing generative AIs capabilities, its future is incredibly promising. Expect to see models becoming larger and more powerful, like GPT-4 and PaLM2, which are revolutionizing content creation and personalized customer communications. Such models enable businesses to generate high-quality, human-like outputs more efficiently, with impact seen across many market sectors.
We can also expect to see generative AI models run on a wider variety of hardware devices, which will open up an array of use cases. A notable trend is the rise of multimodal AI models that can understand and generate content across several forms of data, such as text, images, and audio. The result? Users will get more immersive and natural user experiences, especially in fields like virtual reality and augmented reality.
Additionally, generative AI is driving new levels of personalization by improving how it adapts products and services to individual preferences. Its therefore seen as a particularly aggressive driver of change across retail, marketing and ecommerce sectors.
Although artificial intelligence has enjoyed an enormously higher profile over the last few years, the history of AI stretches back to the 1940s. This traditional AI is the basis for generative AI, and while there are major differences, there is major overlap between these two technologies. To fully understand the topic, heres a deeper look at artificial intelligence itself.
Overall, traditional AI is focused on explicit programming to execute tasks with precision. The following are its core characteristics:
Artificial intelligence can compute exponentially faster than the fastest team of human experts, even as it handles far greater complexity. This capability enables an array of use cases, ranging from business automation to research and development to cybersecurity.
AI-driven automation is streamlining repetitive and manual business operations. Robotic process automation (RPA) uses AI to automate routine administrative tasks, freeing up human workers for more complex activities. AI algorithms are used to optimize supply chain management by predicting demand, managing inventory, and optimizing logistics.
In research and development (R&D), traditional AI accelerates innovation by analyzing huge datasets to identify patterns, predict outcomes, and generate new insights. In pharmaceuticals, AI helps drug discovery by predicting the efficacy of compounds and optimizing clinical trials. In engineering, AI models can be used to optimize product designs, which helps to lower the time and cost associated with bringing new products to market.
AI is increasingly used for predictive maintenance, with use cases like analyzing data from machinery to predict failures before they occur. This proactive approach helps schedule maintenance activities at optimal times. The benefits include lower downtime and extended equipment lifespans. Industries such as manufacturing, energy, and transportation are the biggest beneficiaries of predictive maintenance.
AIs role in cybersecurity and fraud detection includes analyzing network traffic and identifying potential threats in real time. AI algorithms detect anomalies and patterns associated with cyber attacks, which leads to faster and more accurate responses. AI-driven systems can automate responses to a variety of threats and reduce the risk of breaches and enhance overall security.
AI-enabled forecasting models help financial leaders predict future trends. AI systems incorporate variables like mixed economic forecasts and non-traditional data sources. It then allows for more reliable and comprehensive financial scenario planning and more specific revenue projections.
The future of AI involves handling ever more complex and multifaceted real-world scenarios. Innovations will likely focus on enhancing the adaptability of rule-based systems, making them more flexible and capable of dealing with unforeseen situations. Expect to see enhanced flexibility and the rise of multimodal systems capable of processing many data types simultaneously. This will allow AI to tackle more complex enterprise challenges across multiple domains and significantly broaden its impact.
Self-improving AI systems are also emerging. They leverage reinforcement learning and dynamic analysis for autonomous optimization of performance over time. This will further enhance adaptability and efficiency without constant human intervention.
The integration of traditional AI with generative AI is expected to create hybrid systems that deliver an exponentially more powerful combination. Innovations in AI hardware and infrastructure, including specialized AI processors, will support these advanced systems. This will allow traditional AI to provide more sophisticated solutions across an expanding array of use cases.
Generative AI and traditional AI face largely similar challenges in terms of ethics, including biases built into systems, job displacement and potential environmental impact.
AI systems can inadvertently magnify biases that were built into their training data. These biases can lead to unfair outcomes, particularly for marginalized groups. To ensure fairness in AI, whether generative or traditional AI, there needs to be meticulous scrutiny of the training data, implementation of bias mitigation strategies, and continual monitoring of AI systems for biased behavior. Techniques like algorithmic fairness reviews and bias audits are a step toward promoting equity and inclusivity in AI applications.
The security and privacy concerns raised by the deployment of AI technologies are pervasive. AI systems often need vast amounts of data, including personal and sensitive information, to function effectively. Whether generative or traditional, ensuring robust data protection measures and maintaining privacy throughout the AI lifecycle are critical. This includes implementing strong encryption, data anonymization techniques, and complying with regulations such as GDPR. Transparency about data usage and incorporating user consent is also essential in building trust and safeguarding privacy.
For the ever-increasing reach and use cases of AI, we need to be able to trust AI and hold the technology accountableand many users do not trust AI systems. This trust is enabled by transparency in AI systems. Explainable AI (XAI) practices allow users and stakeholders to understand how AI algorithms make decisions. By providing clear and understandable explanations of AI processes, organizations can enhance user trust and facilitate better decision-making. A transparent system makes it easy to identify and address any ethical issues and to ensure AI systems are used responsibly.
One of the greatest concerns about the rise of AI has been job displacement as automated systems replace human roles. Alleviating this issue calls for strategies for transitioning workforces to new or evolved roles, such as reskilling and upskilling programs to prepare employees for roles created by AI advancements. Organizations need to consider the broader social implications of deploying AI solutions and work to implement practices that strike a balance between technological progress and socioeconomic stability.
The deployment and training of large AI models, especially generative AI, requires significant computational resources, which leads to substantial energy consumption and environmental impact. Organizations using AI need to develop and implement energy-efficient AI models. They also need to optimize computational resources to minimize carbon footprints. Encouraging sustainable practices in AI development and operation is a must for reducing the environmental impact and promoting green AI technologies.
Artificial intelligence in all its forms is advancing at a remarkable rate, so its advantageous for tech professionals to be knowledgeable about AI skills and developments. Here are relevant courses to help you use these technologies effectively. Please be aware that while each title below refers to generative AI, these courses all teach fundamental concepts that also cover overall AI technology.
This course provides a solid foundation in generative AI, covering fundamental concepts, model types, and practical applications. Its suitable for those who are new to the field and want to explore the potential of generative AI using Google Cloud tools like Vertex AI.
Andrew Ngs course offers a comprehensive introduction to generative AI. It cuts across the workings, uses, and impact of generative AI in various industries. The course also includes hands-on exercises for applying the concepts you learn practically.
Based on a partnership between AWS and DeepLearning.AI, this intermediate-level course goes into using large language models (LLMs) like GPT-4 for generative AI. It covers the architecture, training processes, practical applications of LLMs, and more. The course is designed for data scientists, AI developers, and anyone interested in mastering LLMs and applying them effectively in their work.
No, conversational AI and generative AI are related but distinct subsets of artificial intelligence. Conversational AI is designed to interact with users through dialogue, often used in chatbots and virtual assistants like Siri, Alexa, or Google Assistant. It focuses on understanding and generating human-like responses to deliver meaningful interactions. Generative AI, on the other hand, refers to AI systems that create new content based on learned patterns from existing data. While conversational AI can use generative AI techniques to give responses, generative AI covers a broader range of creative applications beyond just conversation.
Predictive AI focuses on analyzing existing data to forecast future events or trends. It uses techniques like regression analysis, time series analysis, and machine learning models to predict outcomes such as stock prices, weather conditions, or customer behaviors. Generative AI, however, aims to create new data rather than predict future events. It uses models like Generative Adversarial Networks (GANs) and Variational Autoencoders (VAEs) to generate new content that is similar to the training data.
Generative AI has rapidly gained popularity due to several key factors. The development of sophisticated models like GPT-4, GANs, and VAEs has significantly improved the quality and realism of generated content. Increased access to high-performance computing resources such as GPUs and cloud computing has enabled the training of complex generative models. The vast amount of data available for training these models has allowed them to learn from diverse and extensive datasets, enhancing their capabilities. Plus, the wide range of applicationsfrom creative industries like art and music to practical uses such as text generation and synthetic data creationhas driven interest and investment in generative AI.
Generative AI and traditional AI each bring unique strengths and challenges to the table. Generative AI is geared for creativity, generating new and innovative content, and is seeing more integration into fields like art, music, and content creation. In contrast, traditional AI focuses on analyzing existing data to improve efficiency, accuracy, and decision-making, making it invaluable in sectors that value consistency and predictability such as finance, healthcare, and manufacturing.
As both these technologies continue to evolve rapidly, the differences between them will likely lessen, with generative AIs creativity and AIs data crunching strength found side by side in many advanced applications.
Read our guide to the Top 20 Generative AI Tools and Apps 2024 to learn more about what platforms organizations are using to deploy these dynamic technologies across their businesses.
Follow this link:
Generative AI vs. AI: Advantages, Limitations, Ethical Considerations - eWeek
- What Is Machine Learning? | How It Works, Techniques ... [Last Updated On: September 5th, 2019] [Originally Added On: September 5th, 2019]
- Start Here with Machine Learning [Last Updated On: September 22nd, 2019] [Originally Added On: September 22nd, 2019]
- What is Machine Learning? | Emerj [Last Updated On: October 1st, 2019] [Originally Added On: October 1st, 2019]
- Microsoft Azure Machine Learning Studio [Last Updated On: October 1st, 2019] [Originally Added On: October 1st, 2019]
- Machine Learning Basics | What Is Machine Learning? | Introduction To Machine Learning | Simplilearn [Last Updated On: October 1st, 2019] [Originally Added On: October 1st, 2019]
- What is Machine Learning? A definition - Expert System [Last Updated On: October 2nd, 2019] [Originally Added On: October 2nd, 2019]
- Machine Learning | Stanford Online [Last Updated On: October 2nd, 2019] [Originally Added On: October 2nd, 2019]
- How to Learn Machine Learning, The Self-Starter Way [Last Updated On: October 17th, 2019] [Originally Added On: October 17th, 2019]
- definition - What is machine learning? - Stack Overflow [Last Updated On: November 3rd, 2019] [Originally Added On: November 3rd, 2019]
- Artificial Intelligence vs. Machine Learning vs. Deep ... [Last Updated On: November 3rd, 2019] [Originally Added On: November 3rd, 2019]
- Machine Learning in R for beginners (article) - DataCamp [Last Updated On: November 3rd, 2019] [Originally Added On: November 3rd, 2019]
- Machine Learning | Udacity [Last Updated On: November 3rd, 2019] [Originally Added On: November 3rd, 2019]
- Machine Learning Artificial Intelligence | McAfee [Last Updated On: November 3rd, 2019] [Originally Added On: November 3rd, 2019]
- Machine Learning [Last Updated On: November 3rd, 2019] [Originally Added On: November 3rd, 2019]
- AI-based ML algorithms could increase detection of undiagnosed AF - Cardiac Rhythm News [Last Updated On: November 19th, 2019] [Originally Added On: November 19th, 2019]
- The Cerebras CS-1 computes deep learning AI problems by being bigger, bigger, and bigger than any other chip - TechCrunch [Last Updated On: November 19th, 2019] [Originally Added On: November 19th, 2019]
- Can the planet really afford the exorbitant power demands of machine learning? - The Guardian [Last Updated On: November 19th, 2019] [Originally Added On: November 19th, 2019]
- New InfiniteIO Platform Reduces Latency and Accelerates Performance for Machine Learning, AI and Analytics - Business Wire [Last Updated On: November 19th, 2019] [Originally Added On: November 19th, 2019]
- How to Use Machine Learning to Drive Real Value - eWeek [Last Updated On: November 19th, 2019] [Originally Added On: November 19th, 2019]
- Machine Learning As A Service Market to Soar from End-use Industries and Push Revenues in the 2025 - Downey Magazine [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Rad AI Raises $4M to Automate Repetitive Tasks for Radiologists Through Machine Learning - - HIT Consultant [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Machine Learning Improves Performance of the Advanced Light Source - Machine Design [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Synthetic Data: The Diamonds of Machine Learning - TDWI [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- The transformation of healthcare with AI and machine learning - ITProPortal [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Workday talks machine learning and the future of human capital management - ZDNet [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Machine Learning with R, Third Edition - Free Sample Chapters - Neowin [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Verification In The Era Of Autonomous Driving, Artificial Intelligence And Machine Learning - SemiEngineering [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Podcast: How artificial intelligence, machine learning can help us realize the value of all that genetic data we're collecting - Genetic Literacy... [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- The Real Reason Your School Avoids Machine Learning - The Tech Edvocate [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- Siri, Tell Fido To Stop Barking: What's Machine Learning, And What's The Future Of It? - 90.5 WESA [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- Microsoft reveals how it caught mutating Monero mining malware with machine learning - The Next Web [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- The role of machine learning in IT service management - ITProPortal [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- Global Director of Tech Exploration Discusses Artificial Intelligence and Machine Learning at Anheuser-Busch InBev - Seton Hall University News &... [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- The 10 Hottest AI And Machine Learning Startups Of 2019 - CRN: The Biggest Tech News For Partners And The IT Channel [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- Startup jobs of the week: Marketing Communications Specialist, Oracle Architect, Machine Learning Scientist - BetaKit [Last Updated On: November 30th, 2019] [Originally Added On: November 30th, 2019]
- Here's why machine learning is critical to success for banks of the future - Tech Wire Asia [Last Updated On: December 2nd, 2019] [Originally Added On: December 2nd, 2019]
- 3 questions to ask before investing in machine learning for pop health - Healthcare IT News [Last Updated On: December 8th, 2019] [Originally Added On: December 8th, 2019]
- Machine Learning Answers: If Caterpillar Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 8th, 2019] [Originally Added On: December 8th, 2019]
- Measuring Employee Engagement with A.I. and Machine Learning - Dice Insights [Last Updated On: December 8th, 2019] [Originally Added On: December 8th, 2019]
- Amazon Wants to Teach You Machine Learning Through Music? - Dice Insights [Last Updated On: December 8th, 2019] [Originally Added On: December 8th, 2019]
- Machine Learning Answers: If Nvidia Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 8th, 2019] [Originally Added On: December 8th, 2019]
- AI and machine learning platforms will start to challenge conventional thinking - CRN.in [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Machine Learning Answers: If Twitter Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Machine Learning Answers: If Seagate Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Machine Learning Answers: If BlackBerry Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Amazon Releases A New Tool To Improve Machine Learning Processes - Forbes [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Another free web course to gain machine-learning skills (thanks, Finland), NIST probes 'racist' face-recog and more - The Register [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Kubernetes and containers are the perfect fit for machine learning - JAXenter [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- TinyML as a Service and machine learning at the edge - Ericsson [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- AI and machine learning products - Cloud AI | Google Cloud [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Machine Learning | Blog | Microsoft Azure [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Machine Learning in 2019 Was About Balancing Privacy and Progress - ITPro Today [Last Updated On: December 25th, 2019] [Originally Added On: December 25th, 2019]
- CMSWire's Top 10 AI and Machine Learning Articles of 2019 - CMSWire [Last Updated On: December 25th, 2019] [Originally Added On: December 25th, 2019]
- Here's why digital marketing is as lucrative a career as data science and machine learning - Business Insider India [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- Dell's Latitude 9510 shakes up corporate laptops with 5G, machine learning, and thin bezels - PCWorld [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- Finally, a good use for AI: Machine-learning tool guesstimates how well your code will run on a CPU core - The Register [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- Cloud as the enabler of AI's competitive advantage - Finextra [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- Forget Machine Learning, Constraint Solvers are What the Enterprise Needs - - RTInsights [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- Informed decisions through machine learning will keep it afloat & going - Sea News [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- The Problem with Hiring Algorithms - Machine Learning Times - machine learning & data science news - The Predictive Analytics Times [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- New Program Supports Machine Learning in the Chemical Sciences and Engineering - Newswise [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- AI-System Flags the Under-Vaccinated in Israel - PrecisionVaccinations [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- New Contest: Train All The Things - Hackaday [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- AFTAs 2019: Best New Technology Introduced Over the Last 12 MonthsAI, Machine Learning and AnalyticsActiveViam - www.waterstechnology.com [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Educate Yourself on Machine Learning at this Las Vegas Event - Small Business Trends [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Seton Hall Announces New Courses in Text Mining and Machine Learning - Seton Hall University News & Events [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Looking at the most significant benefits of machine learning for software testing - The Burn-In [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Leveraging AI and Machine Learning to Advance Interoperability in Healthcare - - HIT Consultant [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Adventures With Artificial Intelligence and Machine Learning - Toolbox [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Five Reasons to Go to Machine Learning Week 2020 - Machine Learning Times - machine learning & data science news - The Predictive Analytics Times [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Uncover the Possibilities of AI and Machine Learning With This Bundle - Interesting Engineering [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Learning that Targets Millennial and Generation Z - HR Exchange Network [Last Updated On: January 23rd, 2020] [Originally Added On: January 23rd, 2020]
- Red Hat Survey Shows Hybrid Cloud, AI and Machine Learning are the Focus of Enterprises - Computer Business Review [Last Updated On: January 23rd, 2020] [Originally Added On: January 23rd, 2020]
- Vectorspace AI Datasets are Now Available to Power Machine Learning (ML) and Artificial Intelligence (AI) Systems in Collaboration with Elastic -... [Last Updated On: January 23rd, 2020] [Originally Added On: January 23rd, 2020]
- What is Machine Learning? | Types of Machine Learning ... [Last Updated On: January 23rd, 2020] [Originally Added On: January 23rd, 2020]
- How Machine Learning Will Lead to Better Maps - Popular Mechanics [Last Updated On: January 30th, 2020] [Originally Added On: January 30th, 2020]
- Jenkins Creator Launches Startup To Speed Software Testing with Machine Learning -- ADTmag - ADT Magazine [Last Updated On: January 30th, 2020] [Originally Added On: January 30th, 2020]
- An Open Source Alternative to AWS SageMaker - Datanami [Last Updated On: January 30th, 2020] [Originally Added On: January 30th, 2020]
- Machine Learning Could Aid Diagnosis of Barrett's Esophagus, Avoid Invasive Testing - Medical Bag [Last Updated On: January 30th, 2020] [Originally Added On: January 30th, 2020]
- OReilly and Formulatedby Unveil the Smart Cities & Mobility Ecosystems Conference - Yahoo Finance [Last Updated On: January 30th, 2020] [Originally Added On: January 30th, 2020]