Head over to our on-demand library to view sessions from VB Transform 2023. Register Here
Generative AI is gaining wider adoption, particularly in business.
Most recently, for instance, Walmart announced that it is rolling-out a gen AI app to 50,000 non-store employees. As reported by Axios, the app combines data from Walmart with third-party large language models (LLM) and can help employees with a range of tasks, from speeding up the drafting process, to serving as a creative partner, to summarizing large documents and more.
Deployments such as this are helping to drive demand for graphical processing units (GPUs) needed to train powerful deep learning models. GPUs are specialized computing processors that execute programming instructions in parallel instead of sequentially as do traditional central processing units (CPUs).
According to the Wall Street Journal, training these models can cost companies billions of dollars, thanks to the large volumes of data they need to ingest and analyze. This includes all deep learning and foundational LLMs from GPT-4 to LaMDA which power the ChatGPT and Bard chatbot applications, respectively.
VB Transform 2023 On-Demand
Did you miss a session from VB Transform 2023? Register to access the on-demand library for all of our featured sessions.
The gen AI trend is providing powerful momentum for Nvidia, the dominant supplier of these GPUs: The company announced eye-popping earnings for their most recent quarter. At least for Nvidia, it is a time of exuberance, as it seems nearly everyone is trying to get ahold of their GPUs.
Erin Griffiths wrote in the New York Times that start-ups and investors are taking extraordinary measures to obtain these chips: More than money, engineering talent, hype or even profits, tech companies this year are desperate for GPUs.
In his Stratechery newsletter this week, Ben Thompson refers to this as Nvidia on the Mountaintop. Adding to the momentum, Google and Nvidia announced a partnership whereby Googles cloud customers will have greater access to technology powered by Nvidias GPUs. All of this points to the current scarcity of these chips in the face of surging demand.
Does this current demand mark the peak moment for gen AI, or might it instead point to the beginning of the next wave of its development?
Nvidia CEO Jensen Huang said on the companys most recent earnings call that this demand marks the dawn of accelerated computing. He added that it would be wise for companies to divert the capital investment from general purpose computing and focus it on generative AI and accelerated computing.
General purpose computing is a reference to CPUs that have been designed for a broad range of tasks, from spreadsheets to relational databases to ERP. Nvidia is arguing that CPUs are now legacy infrastructure, and that developers should instead optimize their code for GPUs to perform tasks more efficiently than traditional CPUs.
GPUs can execute many calculations simultaneously, making them perfectly suited for tasks like machine learning (ML), where millions of calculations are performed in parallel. GPUs are also particularly adept at certain types of mathematical calculations such as linear algebra and matrix manipulation tasks that are fundamental to deep learning and gen AI.
However, other classes of software (including most existing business applications), are optimized to run on CPUs and would see little benefit from the parallel instruction execution of GPUs.
Thompson appears to hold a similar view: My interpretation of Huangs outlook is that all of these GPUs will be used for a lot of the same activities that are currently run on CPUs; that is certainly a bullish view for Nvidia, because it means the capacity overhang that may come from pursuing generative AI will be backfilled by current cloud computing workloads.
He continued: That noted, Im skeptical: Humans and companies are lazy, and not only are CPU-based applications easier to develop, they are also mostly already built. I have a hard time seeing what companies are going to go through the time and effort to port things that already run on CPUs to GPUs.
Matt Assay of InfoWorld reminds us that we have seen this before. When machine learning first arrived, data scientists applied it to everything, even when there were far simpler tools. As data scientist Noah Lorang once argued, There is a very small subset of business problems that are best solved by machine learning; most of them just need good data and an understanding of what it means.'
The point is, accelerated computing and GPUs are not the answer for every software need.
Nvidia had a great quarter, boosted by the current gold-rush to develop gen AI applications. The company is naturally ebullient as a result. However, as we have seen from the recent Gartner emerging technology hype cycle, gen AI is having a moment and is at the peak of inflated expectations.
According to Singularity University and XPRIZE founder Peter Diamandis, these expectations are about seeing future potential with few of the downsides. At that moment, hype starts to build an unfounded excitement and inflated expectations.
To this very point, we could soon reach the limits of the current gen AI boom. As venture capitalists Paul Kedrosky and Eric Norlin of SK Ventures wrote on their firms Substack: Our view is that we are at the tail end of the first wave of large language model-based AI. That wave started in 2017, with the release of the [Google] transformers paper (Attention is All You Need), and ends somewhere in the next year or two with the kinds of limits people are running up against.
Those limitations include the tendency to hallucinations, inadequate training data in narrow fields, sunsetted training corpora from years ago, or myriad other reasons. They add: Contrary to hyperbole, we are already at the tail end of the current wave of AI.
To be clear, Kedrosky and Norlin are not arguing that gen AI is at a dead-end. Instead, they believe there needs to be substantial technological improvements to achieve anything better than so-so automation and limited productivity growth. The next wave, they argue, will include new models, more open source, and notably ubiquitous/cheap GPUs which if correct may not bode well for Nvidia, but would benefit those needing the technology.
As Fortune noted, Amazon has made clear its intentions to directly challenge Nvidias dominant position in chip manufacturing. They are not alone, as numerous startups are also vying for market share as are chip stalwarts including AMD. Challenging a dominant incumbent is exceedingly difficult. In this case, at least, broadening sources for these chips and reducing prices of a scarce technology will be key to developing and disseminating the next wave of gen AI innovation.
The future for gen AI appears bright, despite hitting a peak of expectations existing limitations of the current generation of models and applications. The reasons behind this promise are likely several, but perhaps foremost is a generational shortage of workers across the economy that will continue to drive the need for greater automation.
Although AI and automation have historically been viewed as separate, this point of view is changing with the advent of gen AI. The technology is increasingly becoming a driver for automation and resulting productivity. Workflow company Zapier co-founder Mike Knoop referred to this phenomenon on a recent Eye on AI podcast when he said: AI and automation are mode collapsing into the same thing.
Certainly, McKinsey believes this. In a recent report they stated: generative AI is poised to unleash the next wave of productivity. They are hardly alone. For example, Goldman Sachs stated that gen AI could raise global GDP by 7%.
Whether or not we are at the zenith of the current gen AI, it is clearly an area that will continue to evolve and catalyze debates across business. While the challenges are significant, so are the opportunities especially in a world hungry for innovation and efficiency. The race for GPU domination is but a snapshot in this unfolding narrative, a prologue to the future chapters of AI and computing.
Gary Grossman is senior VP of the technology practice at Edelman and global lead of the Edelman AI Center of Excellence.
Welcome to the VentureBeat community!
DataDecisionMakers is where experts, including the technical people doing data work, can share data-related insights and innovation.
If you want to read about cutting-edge ideas and up-to-date information, best practices, and the future of data and data tech, join us at DataDecisionMakers.
You might even considercontributing an articleof your own!
Read More From DataDecisionMakers
Continued here:
Generative AI at an inflection point: What's next for real-world ... - VentureBeat
- What Is Machine Learning? | How It Works, Techniques ... [Last Updated On: September 5th, 2019] [Originally Added On: September 5th, 2019]
- Start Here with Machine Learning [Last Updated On: September 22nd, 2019] [Originally Added On: September 22nd, 2019]
- What is Machine Learning? | Emerj [Last Updated On: October 1st, 2019] [Originally Added On: October 1st, 2019]
- Microsoft Azure Machine Learning Studio [Last Updated On: October 1st, 2019] [Originally Added On: October 1st, 2019]
- Machine Learning Basics | What Is Machine Learning? | Introduction To Machine Learning | Simplilearn [Last Updated On: October 1st, 2019] [Originally Added On: October 1st, 2019]
- What is Machine Learning? A definition - Expert System [Last Updated On: October 2nd, 2019] [Originally Added On: October 2nd, 2019]
- Machine Learning | Stanford Online [Last Updated On: October 2nd, 2019] [Originally Added On: October 2nd, 2019]
- How to Learn Machine Learning, The Self-Starter Way [Last Updated On: October 17th, 2019] [Originally Added On: October 17th, 2019]
- definition - What is machine learning? - Stack Overflow [Last Updated On: November 3rd, 2019] [Originally Added On: November 3rd, 2019]
- Artificial Intelligence vs. Machine Learning vs. Deep ... [Last Updated On: November 3rd, 2019] [Originally Added On: November 3rd, 2019]
- Machine Learning in R for beginners (article) - DataCamp [Last Updated On: November 3rd, 2019] [Originally Added On: November 3rd, 2019]
- Machine Learning | Udacity [Last Updated On: November 3rd, 2019] [Originally Added On: November 3rd, 2019]
- Machine Learning Artificial Intelligence | McAfee [Last Updated On: November 3rd, 2019] [Originally Added On: November 3rd, 2019]
- Machine Learning [Last Updated On: November 3rd, 2019] [Originally Added On: November 3rd, 2019]
- AI-based ML algorithms could increase detection of undiagnosed AF - Cardiac Rhythm News [Last Updated On: November 19th, 2019] [Originally Added On: November 19th, 2019]
- The Cerebras CS-1 computes deep learning AI problems by being bigger, bigger, and bigger than any other chip - TechCrunch [Last Updated On: November 19th, 2019] [Originally Added On: November 19th, 2019]
- Can the planet really afford the exorbitant power demands of machine learning? - The Guardian [Last Updated On: November 19th, 2019] [Originally Added On: November 19th, 2019]
- New InfiniteIO Platform Reduces Latency and Accelerates Performance for Machine Learning, AI and Analytics - Business Wire [Last Updated On: November 19th, 2019] [Originally Added On: November 19th, 2019]
- How to Use Machine Learning to Drive Real Value - eWeek [Last Updated On: November 19th, 2019] [Originally Added On: November 19th, 2019]
- Machine Learning As A Service Market to Soar from End-use Industries and Push Revenues in the 2025 - Downey Magazine [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Rad AI Raises $4M to Automate Repetitive Tasks for Radiologists Through Machine Learning - - HIT Consultant [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Machine Learning Improves Performance of the Advanced Light Source - Machine Design [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Synthetic Data: The Diamonds of Machine Learning - TDWI [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- The transformation of healthcare with AI and machine learning - ITProPortal [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Workday talks machine learning and the future of human capital management - ZDNet [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Machine Learning with R, Third Edition - Free Sample Chapters - Neowin [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Verification In The Era Of Autonomous Driving, Artificial Intelligence And Machine Learning - SemiEngineering [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Podcast: How artificial intelligence, machine learning can help us realize the value of all that genetic data we're collecting - Genetic Literacy... [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- The Real Reason Your School Avoids Machine Learning - The Tech Edvocate [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- Siri, Tell Fido To Stop Barking: What's Machine Learning, And What's The Future Of It? - 90.5 WESA [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- Microsoft reveals how it caught mutating Monero mining malware with machine learning - The Next Web [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- The role of machine learning in IT service management - ITProPortal [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- Global Director of Tech Exploration Discusses Artificial Intelligence and Machine Learning at Anheuser-Busch InBev - Seton Hall University News &... [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- The 10 Hottest AI And Machine Learning Startups Of 2019 - CRN: The Biggest Tech News For Partners And The IT Channel [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- Startup jobs of the week: Marketing Communications Specialist, Oracle Architect, Machine Learning Scientist - BetaKit [Last Updated On: November 30th, 2019] [Originally Added On: November 30th, 2019]
- Here's why machine learning is critical to success for banks of the future - Tech Wire Asia [Last Updated On: December 2nd, 2019] [Originally Added On: December 2nd, 2019]
- 3 questions to ask before investing in machine learning for pop health - Healthcare IT News [Last Updated On: December 8th, 2019] [Originally Added On: December 8th, 2019]
- Machine Learning Answers: If Caterpillar Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 8th, 2019] [Originally Added On: December 8th, 2019]
- Measuring Employee Engagement with A.I. and Machine Learning - Dice Insights [Last Updated On: December 8th, 2019] [Originally Added On: December 8th, 2019]
- Amazon Wants to Teach You Machine Learning Through Music? - Dice Insights [Last Updated On: December 8th, 2019] [Originally Added On: December 8th, 2019]
- Machine Learning Answers: If Nvidia Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 8th, 2019] [Originally Added On: December 8th, 2019]
- AI and machine learning platforms will start to challenge conventional thinking - CRN.in [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Machine Learning Answers: If Twitter Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Machine Learning Answers: If Seagate Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Machine Learning Answers: If BlackBerry Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Amazon Releases A New Tool To Improve Machine Learning Processes - Forbes [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Another free web course to gain machine-learning skills (thanks, Finland), NIST probes 'racist' face-recog and more - The Register [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Kubernetes and containers are the perfect fit for machine learning - JAXenter [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- TinyML as a Service and machine learning at the edge - Ericsson [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- AI and machine learning products - Cloud AI | Google Cloud [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Machine Learning | Blog | Microsoft Azure [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Machine Learning in 2019 Was About Balancing Privacy and Progress - ITPro Today [Last Updated On: December 25th, 2019] [Originally Added On: December 25th, 2019]
- CMSWire's Top 10 AI and Machine Learning Articles of 2019 - CMSWire [Last Updated On: December 25th, 2019] [Originally Added On: December 25th, 2019]
- Here's why digital marketing is as lucrative a career as data science and machine learning - Business Insider India [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- Dell's Latitude 9510 shakes up corporate laptops with 5G, machine learning, and thin bezels - PCWorld [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- Finally, a good use for AI: Machine-learning tool guesstimates how well your code will run on a CPU core - The Register [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- Cloud as the enabler of AI's competitive advantage - Finextra [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- Forget Machine Learning, Constraint Solvers are What the Enterprise Needs - - RTInsights [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- Informed decisions through machine learning will keep it afloat & going - Sea News [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- The Problem with Hiring Algorithms - Machine Learning Times - machine learning & data science news - The Predictive Analytics Times [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- New Program Supports Machine Learning in the Chemical Sciences and Engineering - Newswise [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- AI-System Flags the Under-Vaccinated in Israel - PrecisionVaccinations [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- New Contest: Train All The Things - Hackaday [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- AFTAs 2019: Best New Technology Introduced Over the Last 12 MonthsAI, Machine Learning and AnalyticsActiveViam - www.waterstechnology.com [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Educate Yourself on Machine Learning at this Las Vegas Event - Small Business Trends [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Seton Hall Announces New Courses in Text Mining and Machine Learning - Seton Hall University News & Events [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Looking at the most significant benefits of machine learning for software testing - The Burn-In [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Leveraging AI and Machine Learning to Advance Interoperability in Healthcare - - HIT Consultant [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Adventures With Artificial Intelligence and Machine Learning - Toolbox [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Five Reasons to Go to Machine Learning Week 2020 - Machine Learning Times - machine learning & data science news - The Predictive Analytics Times [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Uncover the Possibilities of AI and Machine Learning With This Bundle - Interesting Engineering [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Learning that Targets Millennial and Generation Z - HR Exchange Network [Last Updated On: January 23rd, 2020] [Originally Added On: January 23rd, 2020]
- Red Hat Survey Shows Hybrid Cloud, AI and Machine Learning are the Focus of Enterprises - Computer Business Review [Last Updated On: January 23rd, 2020] [Originally Added On: January 23rd, 2020]
- Vectorspace AI Datasets are Now Available to Power Machine Learning (ML) and Artificial Intelligence (AI) Systems in Collaboration with Elastic -... [Last Updated On: January 23rd, 2020] [Originally Added On: January 23rd, 2020]
- What is Machine Learning? | Types of Machine Learning ... [Last Updated On: January 23rd, 2020] [Originally Added On: January 23rd, 2020]
- How Machine Learning Will Lead to Better Maps - Popular Mechanics [Last Updated On: January 30th, 2020] [Originally Added On: January 30th, 2020]
- Jenkins Creator Launches Startup To Speed Software Testing with Machine Learning -- ADTmag - ADT Magazine [Last Updated On: January 30th, 2020] [Originally Added On: January 30th, 2020]
- An Open Source Alternative to AWS SageMaker - Datanami [Last Updated On: January 30th, 2020] [Originally Added On: January 30th, 2020]
- Machine Learning Could Aid Diagnosis of Barrett's Esophagus, Avoid Invasive Testing - Medical Bag [Last Updated On: January 30th, 2020] [Originally Added On: January 30th, 2020]
- OReilly and Formulatedby Unveil the Smart Cities & Mobility Ecosystems Conference - Yahoo Finance [Last Updated On: January 30th, 2020] [Originally Added On: January 30th, 2020]