Feasibility and application of machine learning enabled fast screening of poly-beta-amino-esters for cartilage therapies | Scientific Reports -…

Gupta, R. et al. Artificial intelligence to deep learning: Machine intelligence approach for drug discovery. Mol. Divers. 25, 13151360. https://doi.org/10.1007/s11030-021-10217-3 (2021).

CAS Article PubMed PubMed Central Google Scholar

Rda, C., Kaufmann, E. & Delahaye-Duriez, A. Machine learning applications in drug development. Comput. Struct. Biotechnol. J. 18, 241252. https://doi.org/10.1016/j.csbj.2019.12.006 (2020).

CAS Article PubMed Google Scholar

Deloitte Centre for Health Solutions - Embracing the future of work to unlock RD productivity. https://www2.deloitte.com/content/dam/Deloitte/uk/Documents/life-sciences-health-care/deloitte-uk-measuring-roipharma.pdf.

Morgan, S., Grootendorst, P., Lexchin, J., Cunningham, C. & Greyson, D. The cost of drug development: A systematic review. Health Policy 100, 417. https://doi.org/10.1016/j.healthpol.2010.12.002 (2011).

Article PubMed Google Scholar

Reis, M. et al. Machine-learning-guided discovery of 19F MRI agents enabled by automated copolymer synthesis. J. Am. Chem. Soc. 143, 1767717689. https://doi.org/10.1021/jacs.1c08181 (2021).

CAS Article PubMed Google Scholar

Ekins, S. et al. Exploiting machine learning for end-to-end drug discovery and development. Nat. Mater. 18, 435441. https://doi.org/10.1038/s41563-019-0338-z (2019).

ADS CAS Article PubMed PubMed Central Google Scholar

Struble, T. J. et al. Current and future roles of artificial intelligence in medicinal chemistry synthesis. J. Med. Chem. 63, 86678682. https://doi.org/10.1021/acs.jmedchem.9b02120 (2020).

CAS Article PubMed PubMed Central Google Scholar

Paul, D. et al. Artificial intelligence in drug discovery and development. Drug Discov. Today 26, 8093. https://doi.org/10.1016/j.drudis.2020.10.010 (2021).

CAS Article PubMed Google Scholar

Kimber, T. B., Chen, Y. & Volkamer, A. Deep learning in virtual screening: Recent applications and developments. Int. J. Mol. Sci. 22, 4435. https://doi.org/10.3390/ijms22094435 (2021).

CAS Article PubMed PubMed Central Google Scholar

Moosavi, S. M., Jablonka, K. M. & Smit, B. The role of machine learning in the understanding and design of materials. J. Am. Chem. Soc. 142, 2027320287. https://doi.org/10.1021/jacs.0c09105 (2020).

CAS Article PubMed Central Google Scholar

Baum, Z. J. et al. Artificial intelligence in chemistry: Current trends and future directions. J. Chem. Inf. Model. 61, 31973212. https://doi.org/10.1021/acs.jcim.1c00619 (2021).

CAS Article PubMed Google Scholar

Butler, K. T., Davies, D. W., Cartwright, H., Isayev, O. & Walsh, A. Machine learning for molecular and materials science. Nature 559, 547555. https://doi.org/10.1038/s41586-018-0337-2 (2018).

ADS CAS Article PubMed Google Scholar

Stephenson, N. et al. Survey of machine learning techniques in drug discovery. Curr. Drug Metab. 20, 185193. https://doi.org/10.2174/1389200219666180820112457 (2019).

CAS Article PubMed Google Scholar

Khan, S. R., Al Rijjal, D., Piro, A. & Wheeler, M. B. Integration of AI and traditional medicine in drug discovery. Drug Discov. Today 26, 982992. https://doi.org/10.1016/j.drudis.2021.01.008 (2021).

CAS Article PubMed Google Scholar

Rohall, S. L. et al. An Artificial intelligence approach to proactively inspire drug discovery with recommendations. J. Med. Chem. 63, 88248834. https://doi.org/10.1021/acs.jmedchem.9b02130 (2020).

CAS Article PubMed Google Scholar

Yi, Z. et al. Mapping drug-induced neuropathy through in-situ motor protein tracking and machine learning. J. Am. Chem. Soc. 143, 1490714915. https://doi.org/10.1021/jacs.1c07312 (2021).

CAS Article PubMed Google Scholar

Espinoza, G. Z., Angelo, R. M., Oliveira, P. R. & Honorio, K. M. Evaluating deep learning models for predicting ALK-5 inhibition. PLoS ONE 16, e0246126. https://doi.org/10.1371/journal.pone.0246126 (2021).

CAS Article PubMed PubMed Central Google Scholar

Stokes, J. M. et al. A deep learning approach to antibiotic discovery. Cell 180, 688-702.e613. https://doi.org/10.1016/j.cell.2020.01.021 (2020).

CAS Article PubMed PubMed Central Google Scholar

Bess, A. et al. Artificial intelligence for the discovery of novel antimicrobial agents for emerging infectious diseases. Drug Discov. Today https://doi.org/10.1016/j.drudis.2021.10.022 (2021).

Article PubMed PubMed Central Google Scholar

Kundu, S. et al. Enabling early detection of osteoarthritis from presymptomatic cartilage texture maps via transport-based learning. Proc. Natl. Acad. Sci. U. S. A. 117, 2470924719. https://doi.org/10.1073/pnas.1917405117 (2020).

ADS CAS Article PubMed PubMed Central Google Scholar

Tsigelny, I. F. Artificial intelligence in drug combination therapy. Brief. Bioinform. 20, 14341448. https://doi.org/10.1093/bib/bby004 (2019).

CAS Article PubMed Google Scholar

Patel, L., Shukla, T., Huang, X., Ussery, D. W. & Wang, S. Machine learning methods in drug discovery. Molecules 25, 5277. https://doi.org/10.3390/molecules25225277 (2020).

CAS Article PubMed Central Google Scholar

Gao, C. et al. Innovative materials science via machine learning. Adv. Funct. Mater. 32, 2108044. https://doi.org/10.1002/adfm.202108044 (2022).

CAS Article Google Scholar

Yin, Z.-W. et al. Advanced electron energy loss spectroscopy for battery studies. Adv. Funct. Mater. 32, 2107190. https://doi.org/10.1002/adfm.202107190 (2022).

CAS Article Google Scholar

Miljkovi, F., Rodrguez-Prez, R. & Bajorath, J. Impact of artificial intelligence on compound discovery, design, and synthesis. ACS Omega https://doi.org/10.1021/acsomega.1c05512 (2021).

Article PubMed PubMed Central Google Scholar

Tkatchenko, A. Machine learning for chemical discovery. Nat. Commun. 11, 4125. https://doi.org/10.1038/s41467-020-17844-8 (2020).

ADS CAS Article PubMed PubMed Central Google Scholar

Ripphausen, P., Nisius, B., Peltason, L. & Bajorath, J. Quo vadis, virtual screening? A comprehensive survey of prospective applications. J Med Chem 53, 84618467. https://doi.org/10.1021/jm101020z (2010).

CAS Article PubMed Google Scholar

Kimber, T. B., Chen, Y. & Volkamer, A. Deep learning in virtual screening: Recent applications and developments. Int. J. Mol. Sci. https://doi.org/10.3390/ijms22094435 (2021).

Article PubMed PubMed Central Google Scholar

Gautam, V., Gaurav, A., Masand, N., Lee, V. S. & Patil, V. M. Artificial intelligence and machine-learning approaches in structure and ligand-based discovery of drugs affecting central nervous system. Mol. Divers. https://doi.org/10.1007/s11030-022-10489-3 (2022).

Article PubMed Google Scholar

Mizera, M. & Latek, D. Ligand-receptor interactions and machine learning in GCGR and GLP-1R drug discovery. Int. J. Mol. Sci. https://doi.org/10.3390/ijms22084060 (2021).

Article PubMed PubMed Central Google Scholar

Gawriljuk, V. O. et al. Development of machine learning models and the discovery of a new antiviral compound against yellow fever virus. J. Chem. Inf. Model. 61, 38043813. https://doi.org/10.1021/acs.jcim.1c00460 (2021).

CAS Article PubMed Google Scholar

Safiri, S. et al. Global, regional and national burden of osteoarthritis 19902017: A systematic analysis of the Global Burden of Disease Study 2017. Ann. Rheum. Dis. 79, 819828. https://doi.org/10.1136/annrheumdis-2019-216515 (2020).

Article PubMed Google Scholar

Buckwalter, J. A., Mankin, H. J. & Grodzinsky, A. J. Articular cartilage and osteoarthritis. Instr. Course Lect. 54, 465480 (2005).

PubMed Google Scholar

Bajpayee, A. G., Wong, C. R., Bawendi, M. G., Frank, E. H. & Grodzinsky, A. J. Avidin as a model for charge driven transport into cartilage and drug delivery for treating early stage post-traumatic osteoarthritis. Biomaterials 35, 538549. https://doi.org/10.1016/j.biomaterials.2013.09.091 (2014).

CAS Article PubMed Google Scholar

Geiger, B. Grodzinsky, A. & Hammond, P. - Designing Drug Delivery Systems for Articular Joints - May 2018 Chemical Engineering Progress (CEP) - American Institute of Chemical Engineers (AIChE)

Geiger, B. C., Wang, S., Padera, R. F., Grodzinsky, A. J. & Hammond, P. T. Cartilage-penetrating nanocarriers improve delivery and efficacy of growth factor treatment of osteoarthritis. Sci. Transl. Med. 10, eaat8800. https://doi.org/10.1126/scitranslmed.aat8800 (2018).

CAS Article PubMed PubMed Central Google Scholar

Jacobs J.W.G. & Bijlsma J.W.J. Glucocorticoid therapy. in Kelley's Textbook of Rheumatology 7th edn. 870874 (Elsevier Saunders, 2005).

Perni, S. & Prokopovich, P. Poly-beta-amino-esters nano-vehicles based drug delivery system for cartilage. Nanomedicine 13, 539548. https://doi.org/10.1016/j.nano.2016.10.001 (2017).

CAS Article PubMed Google Scholar

Perni, S. & Prokopovich, P. Optimisation and feature selection of poly-beta-amino-ester as a drug delivery system for cartilage. J. Mater. Chem. B 8, 50965108. https://doi.org/10.1039/c9tb02778e (2020).

CAS Article PubMed PubMed Central Google Scholar

Green, J. J., Langer, R. & Anderson, D. G. A combinatorial polymer library approach yields insight into nonviral gene delivery. Acc. Chem. Res. 41, 749759. https://doi.org/10.1021/ar7002336 (2008).

CAS Article PubMed PubMed Central Google Scholar

Burger, S. V. Introduction to machine learning with R: Rigorous mathematical analysis. (2018).

Friedman, J., Hastie, J. & Tibshirani, R. The elements of statistical learning. (2009).

Russo, D. P., Zorn, K. M., Clark, A. M., Zhu, H. & Ekins, S. Comparing multiple machine learning algorithms and metrics for estrogen receptor binding prediction. Mol. Pharm. 15, 43614370. https://doi.org/10.1021/acs.molpharmaceut.8b00546 (2018).

CAS Article PubMed PubMed Central Google Scholar

Korotcov, A., Tkachenko, V., Russo, D. P. & Ekins, S. Comparison of deep learning with multiple machine learning methods and metrics using diverse drug discovery data sets. Mol. Pharm. 14, 44624475. https://doi.org/10.1021/acs.molpharmaceut.7b00578 (2017).

CAS Article PubMed PubMed Central Google Scholar

Fan, Y. et al. Investigation of machine intelligence in compound cell activity classification. Mol. Pharm. 16, 44724484. https://doi.org/10.1021/acs.molpharmaceut.9b00558 (2019).

CAS Article PubMed Google Scholar

Guan, X. et al. Clinical and inflammatory features based machine learning model for fatal risk prediction of hospitalized COVID-19 patients: results from a retrospective cohort study. Ann. Med. 53, 257266. https://doi.org/10.1080/07853890.2020.1868564 (2021).

CAS Article PubMed PubMed Central Google Scholar

Kuhn, M. & Johnson, K. Applied Predictive Modeling. (2013).

Zhou, Z. H. Ensemble Methods: Foundations and Algorithms (Chapman and Hall/CRC, 2012).

Book Google Scholar

Fanourgakis, G. S., Gkagkas, K., Tylianakis, E. & Froudakis, G. E. A universal machine learning algorithm for large-scale screening of materials. J. Am. Chem. Soc. 142, 38143822. https://doi.org/10.1021/jacs.9b11084 (2020).

CAS Article PubMed Google Scholar

Chen, J. et al. Machine learning aids classification and discrimination of noncanonical DNA folding motifs by an arrayed host: Guest sensing system. J. Am. Chem. Soc. 143, 1279112799. https://doi.org/10.1021/jacs.1c06031 (2021).

CAS Article PubMed Google Scholar

Jang, J., Gu, G. H., Noh, J., Kim, J. & Jung, Y. Structure-based synthesizability prediction of crystals using partially supervised learning. J. Am. Chem. Soc. 142, 1883618843. https://doi.org/10.1021/jacs.0c07384 (2020).

CAS Article PubMed Google Scholar

Guo, Y. et al. Machine-learning-guided discovery and optimization of additives in preparing Cu catalysts for CO2 reduction. J. Am. Chem. Soc. 143, 57555762. https://doi.org/10.1021/jacs.1c00339 (2021).

CAS Article PubMed Google Scholar

Xie, Y. et al. Machine learning assisted synthesis of metal-organic nanocapsules. J. Am. Chem. Soc. 142, 14751481. https://doi.org/10.1021/jacs.9b11569 (2020).

CAS Article PubMed Google Scholar

See original here:
Feasibility and application of machine learning enabled fast screening of poly-beta-amino-esters for cartilage therapies | Scientific Reports -...

Related Posts

Comments are closed.