Factors of acute respiratory infection among under-five children across sub-Saharan African countries using machine … – Nature.com

World Health Organization. Children: Reducing Mortality (World Health Organization, 2019).

Google Scholar

Rudan, I. et al. Global estimate of the incidence of clinical pneumonia among children under five years of age. Bull. World Health Organ. 82(12), 895903 (2004).

PubMed Google Scholar

Goodarzi, E. et al. Epidemiology of mortality induced by acute respiratory infections in infants and children under the age of 5 years and its relationship with the Human Development Index in Asia: An updated ecological study. J. Public Health 29(5), 10471054 (2021).

Article Google Scholar

Organization, W. H. World Report on Ageing and Health (World Health Organization, 2015).

Google Scholar

Anjum, M. U., Riaz, H. & Tayyab, H. M. Acute respiratory tract infections (Aris);: Clinico-epidemiolocal profile in children of less than five years of age. Prof. Med. J. 24(02), 322325 (2017).

Google Scholar

Ujunwa, F. & Ezeonu, C. Risk factors for acute respiratory tract infections in under-five children in enugu Southeast Nigeria. Ann. Med. Health Sci. Res. 4(1), 9599 (2014).

Article PubMed PubMed Central Google Scholar

Sultana, M. et al. Prevalence, determinants and health care-seeking behavior of childhood acute respiratory tract infections in Bangladesh. PloS one 14(1), e0210433 (2019).

Article CAS PubMed PubMed Central Google Scholar

Kjrgaard, J. et al. Diagnosis and treatment of acute respiratory illness in children under five in primary care in low-, middle-, and high-income countries: A descriptive FRESH AIR study. PLoS One 14(11), e0221389 (2019).

Article PubMed PubMed Central Google Scholar

Banda, B. et al. Risk factors associated with acute respiratory infections among under-five children admitted to Arthurs Children Hospital, Ndola, Zambia. Asian Pac. J. Health Sci. 3(3), 153159 (2016).

Article Google Scholar

Harerimana, J.-M. et al. Social, economic and environmental risk factors for acute lower respiratory infections among children under five years of age in Rwanda. Arch. Public Health 74(1), 17 (2016).

Article Google Scholar

Landrigan, P. J. et al. The Lancet Commission on pollution and health. Lancet 391(10119), 462512 (2018).

Article PubMed Google Scholar

Lelieveld, J. et al. Loss of life expectancy from air pollution compared to other risk factors: A worldwide perspective. Cardiovasc. Res. 116(11), 19101917 (2020).

Article CAS PubMed PubMed Central Google Scholar

Mirabelli, M. C., Ebelt, S. & Damon, S. A. Air quality index and air quality awareness among adults in the United States. Environ. Res. 183, 109185 (2020).

Article CAS PubMed PubMed Central Google Scholar

Fleming, S. et al. Normal ranges of heart rate and respiratory rate in children from birth to 18 years of age: A systematic review of observational studies. Lancet 377(9770), 10111018 (2011).

Article PubMed PubMed Central Google Scholar

Gasana, J. et al. Motor vehicle air pollution and asthma in children: A meta-analysis. Environ. Res. 117, 3645 (2012).

Article CAS PubMed Google Scholar

Osborne, S. et al. Air quality around schools: Part II-mapping PM2.5 concentrations and inequality analysis. Environ. Res. 197, 111038 (2021).

Article CAS PubMed Google Scholar

Vong, C.-M. et al. Imbalanced learning for air pollution by meta-cognitive online sequential extreme learning machine. Cognit. Comput. 7, 381391 (2015).

Article Google Scholar

Ginantra, N., Indradewi, I. & Hartono E. Machine learning approach for acute respiratory infections (ISPA) prediction: Case study indonesia. in Journal of Physics: Conference series. (IOP Publishing, 2020).

Ku, Y. et al. Machine learning models for predicting the occurrence of respiratory diseases using climatic and air-pollution factors. Clin. Exp. Otorhinolaryngol. 15(2), 168 (2022).

Article CAS PubMed PubMed Central Google Scholar

Ravindra, K. et al. Application of machine learning approaches to predict the impact of ambient air pollution on outpatient visits for acute respiratory infections. Sci. Total Environ. 858, 159509 (2023).

Article CAS PubMed Google Scholar

Aliaga, A. & Ren, R. The Optimal Sample Sizes for Two-Stage Cluster Sampling in Demographic and Health Surveys (ORC Macro, 2006).

Google Scholar

Hammer, M. S. et al. Global estimates and long-term trends of fine particulate matter concentrations (19982018). Environ. Sci. Technol. 54(13), 78797890 (2020).

Article ADS CAS PubMed Google Scholar

Croft, T. N. et al. Guide to DHS Statistics Vol. 645 (Rockville, ICF, 2018).

Google Scholar

Organization, W.H., Global influenza strategy 20192030. (2019).

Kjrgaard, J. et al. Correction: Diagnosis and treatment of acute respiratory illness in children under five in primary care in low-, middle-, and high-income countries: A descriptive FRESH AIR study. Plos one 15(2), e0229680 (2020).

Article PubMed PubMed Central Google Scholar

Fetene, M. T., Fenta, H. M. & Tesfaw, L. M. Spatial heterogeneities in acute lower respiratory infections prevalence and determinants across Ethiopian administrative zones. J. Big Data 9(1), 116 (2022).

Article Google Scholar

Yu, H.-F., Huang, F.-L. & Lin, C.-J. Dual coordinate descent methods for logistic regression and maximum entropy models. Mach. Learn. 85(12), 4175 (2011).

Article MathSciNet Google Scholar

Arthur, E. H. & Robert, W. K. Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 5567 (1970).

Article Google Scholar

Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B (Methodol.) 58(1), 267288 (1996).

Article MathSciNet Google Scholar

Zou, H. & Hastie, T. Addendum: Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 67(5), 768768 (2005).

Article MathSciNet Google Scholar

Gron, A. Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems (OReilly Media, 2019).

Google Scholar

James, G. et al. An Introduction to Statistical Learning Vol. 112 (Springer, 2013).

Book Google Scholar

Patrick, E. A. & Fischer, F. P. III. A generalized k-nearest neighbor rule. Inform. Control 16(2), 128152 (1970).

Article MathSciNet Google Scholar

McCallum, A. & Nigam K. A comparison of event models for naive bayes text classification. In AAAI-98 workshop on learning for text categorization. (Madison, 1998).

Zhang, D. Bayesian classification. In Fundamentals of Image Data Mining 161178 (Springer, 2019).

Chapter Google Scholar

Chen, T. & Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22Nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (New York, NY, USA, 2016), KDD 16, ACM. (2016).

Chen, T. & Guestrin C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (2016).

Hecht-Nielsen, R. Theory of the backpropagation neural network. In Neural networks for perception 6593 (Elsevier, 1992).

Chapter Google Scholar

Abdelhafiz, D. et al. Deep convolutional neural networks for mammography: Advances, challenges and applications. BMC Bioinform. 20(11), 120 (2019).

Google Scholar

Hoerl, A. E. & Kennard, R. W. Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 5567 (1970).

Article Google Scholar

Molina, M. & Garip, F. Machine learning for sociology. Ann. Rev. Sociol. 45, 2745 (2019).

Article Google Scholar

Marsland, S. Machine Learning: An Algorithmic Perspective (CRC Press, 2015).

Google Scholar

Zou, H. & Hastie, T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 67(2), 301320 (2005).

Article MathSciNet Google Scholar

Yuan, G.-X., Ho, C.-H. & Lin, C.-J. An improved glmnet for l1-regularized logistic regression. J. Mach. Learn. Res. 13(1), 19992030 (2012).

MathSciNet Google Scholar

Breiman, L. Random forests. Mach. Learn. 45(1), 532 (2001).

Article Google Scholar

Genuer, R., Poggi, J.-M. & Tuleau-Malot, C. Variable selection using random forests. Pattern Recognit. Lett. 31(14), 22252236 (2010).

Article ADS Google Scholar

Janitza, S., Tutz, G. & Boulesteix, A.-L. Random forest for ordinal responses: Prediction and variable selection. Comput. Stat. Data Anal. 96, 5773 (2016).

Article MathSciNet Google Scholar

Genuer, R., Poggi, J.-M. & Tuleau-Malot, C. VSURF: An R package for variable selection using random forests. R J. 7(2), 1933 (2015).

Article Google Scholar

Pal, M. Random forest classifier for remote sensing classification. Int. J. Remote Sens. 26(1), 217222 (2005).

Article Google Scholar

Rodriguez-Galiano, V. F. et al. An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS J. Photogramm. Remote Sens. 67, 93104 (2012).

Article ADS Google Scholar

Liaw, A. & Wiener, M. Classification and regression by randomForest. R news 2(3), 1822 (2002).

Google Scholar

Breiman, L. Random forests. Mach. Learn. 45, 532 (2001).

Article Google Scholar

Quinlau, R. Induction of decision trees. Mach. Learn. 1(1), S1S106 (1986).

See the original post here:
Factors of acute respiratory infection among under-five children across sub-Saharan African countries using machine ... - Nature.com

Related Posts

Comments are closed.