Coordinate-based neural representations for computational adaptive optics in widefield microscopy – Nature.com

Ji, N. Adaptive optical fluorescence microscopy. Nat. Methods 14, 374380 (2017).

Article Google Scholar

Hampson, K. M. et al. Adaptive optics for high-resolution imaging. Nat. Rev. Methods Primer 1, 68 (2021).

Article Google Scholar

Zhang, Q. et al. Adaptive optics for optical microscopy [invited]. Biomed. Opt. Express 14, 1732 (2023).

Article Google Scholar

Rueckel, M., Mack-Bucher, J. A. & Denk, W. Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing. Proc. Natl Acad. Sci. USA 103, 1713717142 (2006).

Article Google Scholar

Cha, J. W., Ballesta, J. & So, P. T. C. Shack-Hartmann wavefront-sensor-based adaptive optics system for multiphoton microscopy. J. Biomed. Opt. 15, 046022 (2010).

Article Google Scholar

Aviles-Espinosa, R. et al. Measurement and correction of in vivo sample aberrations employing a nonlinear guide-star in two-photon excited fluorescence microscopy. Biomed. Opt. Express 2, 3135 (2011).

Article Google Scholar

Azucena, O. et al. Adaptive optics wide-field microscopy using direct wavefront sensing. Opt. Lett. 36, 825827 (2011).

Article Google Scholar

Wang, K. et al. Rapid adaptive optical recovery of optimal resolution over large volumes. Nat. Methods 11, 625628 (2014).

Article Google Scholar

Wang, K. et al. Direct wavefront sensing for high-resolution in vivo imaging in scattering tissue. Nat. Commun. 6, 7276 (2015).

Article Google Scholar

Paine, S. W. & Fienup, J. R. Machine learning for improved image-based wavefront sensing. Opt. Lett. 43, 1235 (2018).

Article Google Scholar

Asensio Ramos, A., De La Cruz Rodrguez, J. & Pastor Yabar, A. Real-time, multiframe, blind deconvolution of solar images. Astron. Astrophys. 620, A73 (2018).

Article Google Scholar

Nishizaki, Y. et al. Deep learning wavefront sensing. Opt. Express 27, 240 (2019).

Article Google Scholar

Andersen, T., Owner-Petersen, M. & Enmark, A. Neural networks for image-based wavefront sensing for astronomy. Opt. Lett. 44, 4618 (2019).

Article Google Scholar

Saha, D. et al. Practical sensorless aberration estimation for 3D microscopy with deep learning. Opt. Express 28, 29044 (2020).

Article Google Scholar

Wu, Y., Guo, Y., Bao, H. & Rao, C. Sub-millisecond phase retrieval for phase-diversity wavefront sensor. Sensors 20, 4877 (2020).

Article Google Scholar

Allan, G., Kang, I., Douglas, E. S., Barbastathis, G. & Cahoy, K. Deep residual learning for low-order wavefront sensing in high-contrast imaging systems. Opt. Express 28, 26267 (2020).

Article Google Scholar

Yanny, K., Monakhova, K., Shuai, R. W. & Waller, L. Deep learning for fast spatially varying deconvolution. Optica 9, 96 (2022).

Article Google Scholar

Hu, Q. et al. Universal adaptive optics for microscopy through embedded neural network control. Light: Sci. Appl. 12, 270 (2023)

Lehtinen, J. et al. Noise2Noise: learning image restoration without clean data. In Proc. 35th International Conference on Machine Learning Vol. 80 (eds Dy, J. & Krause, A.) 29652974 (PMLR, 2018).

Krull, A., Buchholz, T.-O. & Jug, F. Noise2Void - learning denoising from single noisy images. In Proc. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 21242132 (IEEE, 2019); https://doi.org/10.1109/CVPR.2019.00223

Platisa, J. et al. High-speed low-light in vivo two-photon voltage imaging of large neuronal populations. Nat. Methods 20, 10951103 (2023).

Li, X. et al. Real-time denoising enables high-sensitivity fluorescence time-lapse imaging beyond the shot-noise limit. Nat. Biotechnol. https://doi.org/10.1038/s41587-022-01450-8 (2022).

Article Google Scholar

Eom, M. et al. Statistically unbiased prediction enables accurate denoising of voltage imaging data. Nat. Methods 20, 15811592 (2022).

Ren, D., Zhang, K., Wang, Q., Hu, Q. & Zuo, W. Neural blind deconvolution using deep priors. In Proc. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 33383347 (IEEE, 2020); https://doi.org/10.1109/CVPR42600.2020.00340

Wang, F. et al. Phase imaging with an untrained neural network. Light: Sci. Appl. 9, 77 (2020).

Article Google Scholar

Bostan, E., Heckel, R., Chen, M., Kellman, M. & Waller, L. Deep phase decoder: self-calibrating phase microscopy with an untrained deep neural network. Optica 7, 559 (2020).

Article Google Scholar

Kang, I. et al. Simultaneous spectral recovery and CMOS micro-LED holography with an untrained deep neural network. Optica 9, 1149 (2022).

Article Google Scholar

Zhou, K. C. & Horstmeyer, R. Diffraction tomography with a deep image prior. Opt. Express 28, 12872 (2020).

Article Google Scholar

Sun, Y., Liu, J., Xie, M., Wohlberg, B. & Kamilov, U. CoIL: coordinate-based internal learning for tomographic imaging. IEEE Trans. Comput. Imaging 7, 14001412 (2021).

Article Google Scholar

Liu, R., Sun, Y., Zhu, J., Tian, L. & Kamilov, U. Recovery of continuous 3D refractive index maps from discrete intensity-only measurements using neural fields. Nat. Mach. Intell. 4, 781791 (2022).

Kang, I. et al. Accelerated deep self-supervised ptycho-laminography for three-dimensional nanoscale imaging of integrated circuits. Optica 10, 10001008 (2023).

Article Google Scholar

Chan, T. F. & Chiu-Kwong, W. Total variation blind deconvolution. IEEE Trans. Image Process. 7, 370375 (1998).

Article Google Scholar

Levin, A., Weiss, Y., Durand, F. & Freeman, W. T. Understanding and evaluating blind deconvolution algorithms. In Proc. 2009 IEEE Conference on Computer Vision and Pattern Recognition 19641971 (IEEE, 2009); https://doi.org/10.1109/CVPR.2009.5206815

Perrone, D. & Favaro, P. Total variation blind deconvolution: the devil is in the details. In Proc. 2014 IEEE Conference on Computer Vision and Pattern Recognition 29092916 (IEEE, 2014); https://doi.org/10.1109/CVPR.2014.372

Jin, M., Roth, S. & Favaro, P. in Computer Vision ECCV 2018. ECCV 2018. Lecture Notes in Computer Science Vol. 11211 (eds Ferrari, V. et al.) 694711 (Springer, 2018).

Hornik, K., Stinchcombe, M. & White, H. Multilayer feedforward networks are universal approximators. Neural Netw. 2, 359366 (1989).

Article Google Scholar

Cybenko, G. Approximation by superpositions of a sigmoidal function. Math. Control Signals Syst. 2, 303314 (1989).

Tewari, A. et al. Advances in neural rendering. In ACM SIGGRAPH 2021 Courses, 1320 (Association for Computing Machinery, 2021).

Tancik, M. et al. in Advances in Neural Information Processing Systems Vol. 33 (eds Larochelle, H. et al.) 75377547 (Curran Associates, 2020).

Mildenhall, B. et al. NeRF: representing scenes as neural radiance fields for view synthesis. Commun. ACM 65, 99106 (2022).

Article Google Scholar

Perdigao, L., Shemilt, L. A. & Nord, N. rosalindfranklininstitute/RedLionfish v.0.9. Zenodo https://doi.org/10.5281/zenodo.7688291 (2023).

Richardson, W. H. Bayesian-based iterative method ofimage restoration*. J. Opt. Soc. Am. 62, 55 (1972).

Article Google Scholar

Lucy, L. B. An iterative technique for the rectification of observed distributions. Astron. J. 79, 745 (1974).

Article Google Scholar

Sitzmann, V. et al. Scene representation networks: continuous 3D-structure-aware neural scene representations. In Proc. 33rd International Conference on Neural Information Processing Systems Vol. 32 (eds Wallach, H. et al.) 11211132 (Curran Associates, 2019).

Martel, J. N. P. et al. ACORN: adaptive coordinate networks for neural scene representation. ACM Trans. Graph. 40, 113 (2021).

Zhao, H., Gallo, O., Frosio, I. & Kautz, J. Loss functions for image restoration with neural networks. IEEE Trans. Comput. Imaging 3, 4757 (2017).

Article Google Scholar

Kang, I., Zhang, F. & Barbastathis, G. Phase extraction neural network (PhENN) with coherent modulation imaging (CMI) for phase retrieval at low photon counts. Opt. Express 28, 21578 (2020).

Article Google Scholar

Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization. Preprint at https://doi.org/10.48550/arXiv.1412.6980 (2017).

Paszke, A. et al. PyTorch: an imperative style, high-performance deep learning library. In Proc. 33rd International Conference on Neural Information Processing Systems (eds Wallach, H. M. et al.) 721 (Curran Associates, 2019).

Turcotte, R., Liang, Y. & Ji, N. Adaptive optical versus spherical aberration corrections for in vivo brain imaging. Biomed. Opt. Express 8, 38913902 (2017).

Article Google Scholar

Kolouri, S., Park, S. R., Thorpe, M., Slepcev, D. & Rohde, G. K. Optimal mass transport: signal processing and machine-learning applications. IEEE Signal Process Mag. 34, 4359 (2017).

Article Google Scholar

Villani, C. Topics in Optimal Transportation Vol. 58 (American Mathematical Society, 2021).

Turcotte, R. et al. Dynamic super-resolution structured illumination imaging in the living brain. Proc. Natl Acad. Sci. USA 116, 95869591 (2019).

Article Google Scholar

Li, Z. et al. Fast widefield imaging of neuronal structure and function with optical sectioning in vivo. Sci. Adv. 6, eaaz3870 (2020).

Article Google Scholar

Zhang, Q., Pan, D. & Ji, N. High-resolution in vivo optical-sectioning widefield microendoscopy. Optica 7, 1287 (2020).

Article Google Scholar

Zhao, Z. et al. Two-photon synthetic aperture microscopy for minimally invasive fast 3D imaging of native subcellular behaviors in deep tissue. Cell 186, 24752491.e22 (2023).

Article Google Scholar

Wu, J. et al. Iterative tomography with digital adaptive optics permits hour-long intravital observation of 3D subcellular dynamics at millisecond scale. Cell 184, 33183332.e17 (2021).

Article Google Scholar

Gerchberg, R. W. A practical algorithm for the determination of plane from image and diffraction pictures. Optik 35, 237246 (1972).

Google Scholar

Flamary, R. et al. POT: Python optimal transport. J. Mach. Learn. Res. 22, 18 (2021).

Google Scholar

Holmes, T. J. et al. in Handbook of Biological Confocal Microscopy (ed. Pawley, J. B.) 389402 (Springer, 1995).

See more here:
Coordinate-based neural representations for computational adaptive optics in widefield microscopy - Nature.com

Related Posts

Comments are closed.