This is a post hoc exploratory analysis of the COVID STEROID 2 trial7. It was conducted according to a statistical analysis plan, which was written after the pre-planned analyses of the trial were reported, but before any of the analyses reported in this manuscript were conducted (https://osf.io/2mdqn/). This manuscript was presented according to the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) checklist12, with Bayesian analyses reported according to the Reporting of Bayes Used in clinical STudies (ROBUST) guideline13.
HTE implies that some individuals respond differently, i.e., better or worse, than others who receive the same therapy due to differences between individuals. Most trials are designed to evaluate the average treatment effect, which is the summary of all individual effects in the trial sample (see supplementary appendix for additional technical details). Traditional HTE methods examine patient characteristics one at a time, looking to identify treatment effect differences according to individual variables. This approach is well known to be limited as it is underpowered (due to adjustment for multiple testing) and does not account for the fact that many characteristics under examination are correlated and may have synergistic effects. As a result, more complex relationships between variables that better define individuals, and thus may better inform understanding about the variations in treatment response, may be missed using conventional HTE approaches. Thus, identifying true and clinically meaningful HTE requires addressing these data and statistical modeling challenges. BART is inherently an attractive method for this task, as the algorithm automates the detection of nonlinear relationships and interactions hierarchically based on the strength of the relationships, thereby reducing researchers discretion when analyzing experimental data. This approach also avoids any model misspecification or bias inherent in traditional interaction test procedures. BART can also be deployed, as we do herein, within the counterfactual framework to study HTE, i.e., to estimate conditional average treatment effects given the set of covariates or potential effect modifiers11,14,15, and has shown superior performance to competing methods in extensive simulation studies16,17. These features make BART an appealing tool for trialists to explore HTE to inform future confirmatory HTE analyses in trials and hypothesis generation more broadly. Thus, this analysis used BART to evaluate the presence of multivariable HTE and estimate conditional average treatment effects among meaningful subgroups in the COVID STEROID 2 trial.
The COVID STEROID 2 trial7 was an investigator-initiated, international, parallel-group, stratified, blinded, randomized clinical trial conducted at 31 sites in 26 hospitals in Denmark, India, Sweden, and Switzerland between 27 August 2020 and 20 May 20217,18. The trial was approved by the regulatory authorities and ethics committees in all participating countries.
The trial enrolled 1000 adult patients hospitalized with COVID-19 and severe hypoxemia (10 L oxygen/min, use of non-invasive ventilation (NIV), continuous use of continuous positive airway pressure (cCPAP), or invasive mechanical ventilation (IMV)). Patients were primarily excluded due to previous use of systemic corticosteroids for COVID-19 for 5 or more days, unobtainable consent, and use of higher-dose corticosteroids for other indications than COVID-194,17. Patients were randomized 1:1 to dexamethasone 12mg/d or 6mg/d intravenously once daily for up to 10days. Additional details are provided in the primary protocol and trial report7,18.
The trial protocol was approved by the Danish Medicines Agency, the ethics committee of the Capital Region of Denmark, and institutionally at each trial site. The trial was overseen by the Collaboration for Research in Intensive Care and the George Institute for Global Health. A data and safety monitoring committee oversaw the safety of the trial participants and conducted 1 planned interim analysis. Informed consent was obtained from the patients or their legal surrogates according to national regulations.
We examined two outcomes: (1) DAWOLS at day 90 (i.e., the observed number of days without the use of IMV, circulatory support, and kidney replacement therapy without assigning dead patients the worst possible value), and (2) 90-day mortality. Binary mortality outcomes were used to match the primary trial analysis; time-to-event outcomes also generally tend to be less robust for ICU trials19. We selected DAWOLS at day 90 in lieu of the primary outcome of the trial (DAWOLS at day 28) and to align with other analyses of the trial which sought to examine outcomes in a longer term. Both outcomes were assessed in the complete intention-to-treat (ITT) population, which was 982 after the exclusion of patients without consent for the use of their data7. As the sample size is fixed, there was no formal sample size calculation for this study.
While BART is a data-driven approach that can scan for interdependent relationships among any number of factors, we only examined heterogeneity across a pre-selected set of factors deemed to be clinically relevant by the authors and members of the COVID STEROID 2 trial Management Committee. The pre-selected variables that were included in this analysis are listed below with the scale used in parentheses. Continuous covariates were standardized to have a mean of 0 and a standard deviation of 1 prior to analysis. Detailed variable definitions are available in the study protocol18.
participant age (continuous),
limitations in care (yes, no),
level of respiratory support (open system versus NIV/cCPAP versus IMV)
interleukin-6 (IL-6) receptor inhibitors (yes, no),
use of dexamethasone for up to 2days versus use for 3 to 4days prior to randomization,
participant weight (continuous),
diabetes mellitus (yes, no),
ischemic heart disease or heart failure (yes, no),
chronic obstructive pulmonary disease (yes, no), and,
immunosuppression within 3months prior to randomization (yes, no).
We evaluated HTE on the absolute scale (i.e., mean difference in days for the number of DAWOLS at day 90 and the risk difference for 90-day mortality). The analysis was separated into two stages14,20,21,22. In the first stage, conditional average treatment effects were estimated according to each participants covariates using BART models. The DAWOLS outcome was treated as a continuous variable and analyzed using standard BART, while the binary mortality outcome was analyzed using logit BART. In the second stage, a fit-the-fit approach was used, where the estimated conditional average treatment effects were used as dependent variables in models to identify covariate-defined subgroups differential treatment effects. This second stage used classification and regression trees models23, where the maximum depth was set to 3 as a post hoc decision to aid interpretability. As the fit-the-fit reflects estimates from the BART model, the resulting overall treatment effects (e.g., risk difference) vary slightly from the raw trial data.
BART models are often fit using a sum of 200 trees and specifying a base prior of 0.95 and a power prior of 2, which penalize substantial branch growth within each tree15. Although these default hyperparameters tend to work well in practice, it was possible they were not optimal for this data. Thus, the hyperparameters were evaluated using tenfold cross-validation, comparing predictive performance of the model under 27 pre-specified possibilities, namely every combination of power priors equal to 1, 2, or 3, base priors equal to 0.25, 0.5, or 0.95, and number of trees equal to 50, 200, or 400. The priors corresponding to the lowest cross-validation error were used in the final models. Each model used a Markov chain Monte Carlo procedure consisting of 4 chains that each had 100 burn-in iterations and a total length of 1100 iterations. Posterior convergence for each model was assessed using the diagnostic procedures described in Sparapani et al.24. Model diagnostics were good for all models. All parameters seemed to converge within the burn-in period and the z-scores for Gewekes convergence diagnostic25 were approximately standard normal. All BART models were fit using R statistical computing software v. 4.1.226 with the BART package v. 2.924, and all CART models were fit using the rpart package v. 4.1.1627.
The analysis was performed under the ITT paradigm; compliance issues were considered minimal. As in the primary analyses of the trial, the small amount of missing outcome data was ignored in the primary analyses. Sensitivity analyses were performed under best/worst- and worst/best-case imputation. For best/worst-case imputation, the entire estimation procedure was repeated after setting all missing mortality outcome data in the 12mg/d group to alive at 90days and all missing mortality outcome data in the 6mg/d group to dead at 90days. Then, all days with missing life support data were set to alive without life support for the 12mg/d group and the opposite for the 6mg/d group. Under worst/best-case imputation, the estimation procedure was repeated under the opposite conditions, e.g., setting all missing mortality outcome data in the 12mg/d group to dead at 90days and all missing mortality outcome data in the 6mg/d group to alive at 90days.
The resulting decision trees from each fit-the-fit analysis described above (one for the 90-day mortality outcome, and one for the 90-day DAWOLS outcome) were outputted (with continuous variables de-standardized, i.e., back-translated to the original scales). Likewise, the resulting decision trees for each outcome after best- and worst-case imputation were outputted for comparison with the complete records analyses. All statistical code is made available at https://github.com/harhay-lab/Covid-Steroid-HTE.
- What Is Machine Learning? | How It Works, Techniques ... [Last Updated On: September 5th, 2019] [Originally Added On: September 5th, 2019]
- Start Here with Machine Learning [Last Updated On: September 22nd, 2019] [Originally Added On: September 22nd, 2019]
- What is Machine Learning? | Emerj [Last Updated On: October 1st, 2019] [Originally Added On: October 1st, 2019]
- Microsoft Azure Machine Learning Studio [Last Updated On: October 1st, 2019] [Originally Added On: October 1st, 2019]
- Machine Learning Basics | What Is Machine Learning? | Introduction To Machine Learning | Simplilearn [Last Updated On: October 1st, 2019] [Originally Added On: October 1st, 2019]
- What is Machine Learning? A definition - Expert System [Last Updated On: October 2nd, 2019] [Originally Added On: October 2nd, 2019]
- Machine Learning | Stanford Online [Last Updated On: October 2nd, 2019] [Originally Added On: October 2nd, 2019]
- How to Learn Machine Learning, The Self-Starter Way [Last Updated On: October 17th, 2019] [Originally Added On: October 17th, 2019]
- definition - What is machine learning? - Stack Overflow [Last Updated On: November 3rd, 2019] [Originally Added On: November 3rd, 2019]
- Artificial Intelligence vs. Machine Learning vs. Deep ... [Last Updated On: November 3rd, 2019] [Originally Added On: November 3rd, 2019]
- Machine Learning in R for beginners (article) - DataCamp [Last Updated On: November 3rd, 2019] [Originally Added On: November 3rd, 2019]
- Machine Learning | Udacity [Last Updated On: November 3rd, 2019] [Originally Added On: November 3rd, 2019]
- Machine Learning Artificial Intelligence | McAfee [Last Updated On: November 3rd, 2019] [Originally Added On: November 3rd, 2019]
- Machine Learning [Last Updated On: November 3rd, 2019] [Originally Added On: November 3rd, 2019]
- AI-based ML algorithms could increase detection of undiagnosed AF - Cardiac Rhythm News [Last Updated On: November 19th, 2019] [Originally Added On: November 19th, 2019]
- The Cerebras CS-1 computes deep learning AI problems by being bigger, bigger, and bigger than any other chip - TechCrunch [Last Updated On: November 19th, 2019] [Originally Added On: November 19th, 2019]
- Can the planet really afford the exorbitant power demands of machine learning? - The Guardian [Last Updated On: November 19th, 2019] [Originally Added On: November 19th, 2019]
- New InfiniteIO Platform Reduces Latency and Accelerates Performance for Machine Learning, AI and Analytics - Business Wire [Last Updated On: November 19th, 2019] [Originally Added On: November 19th, 2019]
- How to Use Machine Learning to Drive Real Value - eWeek [Last Updated On: November 19th, 2019] [Originally Added On: November 19th, 2019]
- Machine Learning As A Service Market to Soar from End-use Industries and Push Revenues in the 2025 - Downey Magazine [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Rad AI Raises $4M to Automate Repetitive Tasks for Radiologists Through Machine Learning - - HIT Consultant [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Machine Learning Improves Performance of the Advanced Light Source - Machine Design [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Synthetic Data: The Diamonds of Machine Learning - TDWI [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- The transformation of healthcare with AI and machine learning - ITProPortal [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Workday talks machine learning and the future of human capital management - ZDNet [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Machine Learning with R, Third Edition - Free Sample Chapters - Neowin [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Verification In The Era Of Autonomous Driving, Artificial Intelligence And Machine Learning - SemiEngineering [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Podcast: How artificial intelligence, machine learning can help us realize the value of all that genetic data we're collecting - Genetic Literacy... [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- The Real Reason Your School Avoids Machine Learning - The Tech Edvocate [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- Siri, Tell Fido To Stop Barking: What's Machine Learning, And What's The Future Of It? - 90.5 WESA [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- Microsoft reveals how it caught mutating Monero mining malware with machine learning - The Next Web [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- The role of machine learning in IT service management - ITProPortal [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- Global Director of Tech Exploration Discusses Artificial Intelligence and Machine Learning at Anheuser-Busch InBev - Seton Hall University News &... [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- The 10 Hottest AI And Machine Learning Startups Of 2019 - CRN: The Biggest Tech News For Partners And The IT Channel [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- Startup jobs of the week: Marketing Communications Specialist, Oracle Architect, Machine Learning Scientist - BetaKit [Last Updated On: November 30th, 2019] [Originally Added On: November 30th, 2019]
- Here's why machine learning is critical to success for banks of the future - Tech Wire Asia [Last Updated On: December 2nd, 2019] [Originally Added On: December 2nd, 2019]
- 3 questions to ask before investing in machine learning for pop health - Healthcare IT News [Last Updated On: December 8th, 2019] [Originally Added On: December 8th, 2019]
- Machine Learning Answers: If Caterpillar Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 8th, 2019] [Originally Added On: December 8th, 2019]
- Measuring Employee Engagement with A.I. and Machine Learning - Dice Insights [Last Updated On: December 8th, 2019] [Originally Added On: December 8th, 2019]
- Amazon Wants to Teach You Machine Learning Through Music? - Dice Insights [Last Updated On: December 8th, 2019] [Originally Added On: December 8th, 2019]
- Machine Learning Answers: If Nvidia Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 8th, 2019] [Originally Added On: December 8th, 2019]
- AI and machine learning platforms will start to challenge conventional thinking - CRN.in [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Machine Learning Answers: If Twitter Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Machine Learning Answers: If Seagate Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Machine Learning Answers: If BlackBerry Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Amazon Releases A New Tool To Improve Machine Learning Processes - Forbes [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Another free web course to gain machine-learning skills (thanks, Finland), NIST probes 'racist' face-recog and more - The Register [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Kubernetes and containers are the perfect fit for machine learning - JAXenter [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- TinyML as a Service and machine learning at the edge - Ericsson [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- AI and machine learning products - Cloud AI | Google Cloud [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Machine Learning | Blog | Microsoft Azure [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Machine Learning in 2019 Was About Balancing Privacy and Progress - ITPro Today [Last Updated On: December 25th, 2019] [Originally Added On: December 25th, 2019]
- CMSWire's Top 10 AI and Machine Learning Articles of 2019 - CMSWire [Last Updated On: December 25th, 2019] [Originally Added On: December 25th, 2019]
- Here's why digital marketing is as lucrative a career as data science and machine learning - Business Insider India [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- Dell's Latitude 9510 shakes up corporate laptops with 5G, machine learning, and thin bezels - PCWorld [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- Finally, a good use for AI: Machine-learning tool guesstimates how well your code will run on a CPU core - The Register [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- Cloud as the enabler of AI's competitive advantage - Finextra [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- Forget Machine Learning, Constraint Solvers are What the Enterprise Needs - - RTInsights [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- Informed decisions through machine learning will keep it afloat & going - Sea News [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- The Problem with Hiring Algorithms - Machine Learning Times - machine learning & data science news - The Predictive Analytics Times [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- New Program Supports Machine Learning in the Chemical Sciences and Engineering - Newswise [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- AI-System Flags the Under-Vaccinated in Israel - PrecisionVaccinations [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- New Contest: Train All The Things - Hackaday [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- AFTAs 2019: Best New Technology Introduced Over the Last 12 MonthsAI, Machine Learning and AnalyticsActiveViam - www.waterstechnology.com [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Educate Yourself on Machine Learning at this Las Vegas Event - Small Business Trends [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Seton Hall Announces New Courses in Text Mining and Machine Learning - Seton Hall University News & Events [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Looking at the most significant benefits of machine learning for software testing - The Burn-In [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Leveraging AI and Machine Learning to Advance Interoperability in Healthcare - - HIT Consultant [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Adventures With Artificial Intelligence and Machine Learning - Toolbox [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Five Reasons to Go to Machine Learning Week 2020 - Machine Learning Times - machine learning & data science news - The Predictive Analytics Times [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Uncover the Possibilities of AI and Machine Learning With This Bundle - Interesting Engineering [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Learning that Targets Millennial and Generation Z - HR Exchange Network [Last Updated On: January 23rd, 2020] [Originally Added On: January 23rd, 2020]
- Red Hat Survey Shows Hybrid Cloud, AI and Machine Learning are the Focus of Enterprises - Computer Business Review [Last Updated On: January 23rd, 2020] [Originally Added On: January 23rd, 2020]
- Vectorspace AI Datasets are Now Available to Power Machine Learning (ML) and Artificial Intelligence (AI) Systems in Collaboration with Elastic -... [Last Updated On: January 23rd, 2020] [Originally Added On: January 23rd, 2020]
- What is Machine Learning? | Types of Machine Learning ... [Last Updated On: January 23rd, 2020] [Originally Added On: January 23rd, 2020]
- How Machine Learning Will Lead to Better Maps - Popular Mechanics [Last Updated On: January 30th, 2020] [Originally Added On: January 30th, 2020]
- Jenkins Creator Launches Startup To Speed Software Testing with Machine Learning -- ADTmag - ADT Magazine [Last Updated On: January 30th, 2020] [Originally Added On: January 30th, 2020]
- An Open Source Alternative to AWS SageMaker - Datanami [Last Updated On: January 30th, 2020] [Originally Added On: January 30th, 2020]
- Machine Learning Could Aid Diagnosis of Barrett's Esophagus, Avoid Invasive Testing - Medical Bag [Last Updated On: January 30th, 2020] [Originally Added On: January 30th, 2020]
- OReilly and Formulatedby Unveil the Smart Cities & Mobility Ecosystems Conference - Yahoo Finance [Last Updated On: January 30th, 2020] [Originally Added On: January 30th, 2020]