PRESS RELEASE
Published June 17, 2023
Background
A brain tumour can be defined as the uncontrolled development of cancerous cells in the brain. According to previous research, if left unchecked, a brain tumour can lead to cancer. Therefore, it is essential for a radiologist to be accurate about the existence of brain tumours from magnetic resonance images (MRI) for their analysis.
With the advent of e-health and machine/deep learning techniques, medical specialists are able to provide better health care and quick responses to their patients. Using machine learning (ML) techniques, an ML model can be trained to know if brain tumours are in MRI images. Machine learning is a branch of artificial intelligence that can by themselves learn how to solve specific problems if given the right access to data. Furthermore, ML has been effective in making decisions and predictions from data produced by healthcare industries.
This article will critically review different ML pipelines and models used in detecting brain tumours from MRI images and evaluate their strengths and limitations. The datasets used for analysis in this article are the T1-CE MRI image dataset, TCIA (The Cancer Imaging Archive), and Rembrandt database for brain cancer imaging.
Methods and analysis
In this article, a deep neural network called Convolutional neural network and two traditional machine learning algorithms called K-Nearest Neighbours and Nave Bayes' for detecting cancer tumours in the human brain using MRI images in this study.
Method 1.
Convolutional Neural Networks (CNN):
A Convolutional Neural network is a method of deep learning that uses convolutions on a kernel that slides through an image and produces a feat map to better understand segments and objects within an image. A convolutional neural network is used here to segment brain tumour into one of various four classes:
This article will not emphasise which architecture performs best, but on some aspects that are worth taking note of when training a CNN.
A CNN's basic structure consists of an input image, a kernel or filter (usually a 3 x3) matrix that slides horizontally across the image repeatedly moving X strides at a time and generating an output. The weights are then adjusted depending on how alike the newly generated feature map compares to the original input image. The basic structure might sound simple, but many actors come into play for the algorithm to be able to segment and locate brain tumour cells accurately. This study summarizes some of these aspects:
CNN architecture: figure 1 below shows the CNN architecture used to classify the different tumours.
The figure above shows how the CNN architecture processes an image pixel by pixel and automatically extracts the features needed and classifies the tumours using one of four different labels from 0 to 3; 0 healthy region, 1 meningioma tumour, 2 glioma tumour, and 3 pituitary tumour.
Overfitting: This is a very important issue for CNN. When the machine learning algorithm overlearns or memorises the train data, it cannot generalise properly on unseen data. This issue can be taken care of by using more artificially generated data in data augmentation, which is a popular method for this. Another method to avoid overfitting is using dropouts, which is dropping out a certain percentage of the neurons in the network to prevent overlearning. Other methods of dealing with this issue include batch normalisation and pooling.
Batch normalisation is a method of normalisation in the data that employs mini batches, which speeds up the training process by reducing the normal of epochs to be trained and stabilising the training process.
Pooling is another important aspect that downsizes the image and causes the machine learning algorithm to learn features on a downsized or less detailed image. Different pooling methods exist, such as max pooling, which uses the maximum value from the pool to estimate, while mean pooling uses the mean as an estimator.
As the data is non-linear, they need a function to introduce non-linearity in the data. The right activation function for this is the ReLU function or the rectilinear unit. After several layers of convolutions and rectifying using the RelU, the data is completely flattened using pooling into a columnar matrix which is then passed through a fully connected layer. Using a SoftMax activation, the fully connected layers can then be classified based on the classes initiated. The feature map gotten from this will then be used to classify MRI images based on the features it has learned. Keras API was used here as it is a framework for object detection and segmentation.
Method 2
K-Nearest Neighbours (KNN):
K-Nearest Neighbours (KNN) is a classical shallow machine learning algorithm used for brain tumour segmentation and classification. In this study, MRI images undergo segmentation via k-means clustering, an unsupervised algorithm. Features extracted from these clusters are then analyzed using the Gray level Co-Occurrence matrix (GLCM) and inputted into the KNN classifier for classification.
KNN requires extensive data pre-processing to achieve significant results. The study focuses on key pre-processing techniques, including image enhancement through filtering and resizing. Filtering techniques such as mean and median filters are employed to eliminate noise like salt and pepper, Gaussian noise, speckle, and Brownian noise.
Image segmentation involves creating clusters based on color, texture, contrast, and brightness. Cluster analysis using the unsupervised algorithm k-means facilitates easy feature extraction.
Feature extraction utilizes the Gray level Co-occurrence matrix, which measures the spatial dependence of grey-level intensities between pixels. This method has shown accurate results (89.9%) in classifying brain tumour cells using MRI images.
Once features are extracted, they are fed into the KNN classifier, with each segment representing a distinct class. The focus of this article is not on the specific configurations or steps taken by KNN for classification of the feature set.
Method 3
Nave Bayes:
The Nave Bayes algorithm is a supervised machine learning technique used for classification based on the probabilistic theory of Bayes. It assumes that all features (pixels) are independent of each other, making it suitable for applications with randomness.
Similar to the KNN method discussed earlier, the Nave Bayes algorithm requires important pre-processing steps to prepare the data for the machine learning process. The accuracy of the model heavily relies on these pre-processing steps. This article focuses on the following pre-processing techniques:
By implementing these pre-processing techniques, the Nave Bayes algorithm can be applied for accurate brain tumour classification.
After all the above pre-processing steps, the data is now ready to be fed into the Nave Bayes classification algorithm, whose configuration shall not be discussed in this article.
Discussion & evaluation
When looking at the results from the three different methods, it is clearly seen that the use of machine learning in detecting a brain tumour from MRI scans is very promising, with all three methods producing a high level of accuracy. In the classification process, model validation is used to divide the data into training and testing in order to obtain the accuracy of testing results.
The result of the three models in this study can be seen in the figure below. However, all three models were trained and tested on different datasets, which should be noted when comparing accuracy.
Final thoughts
As machine learning gains traction in technology and e-health industries, it's vital to recognize how different models and pipelines impact performance.
The deep learning model Convolutional Neural Network (CNN) outperformed K-Nearest Neighbour Network (KNN) and Nave Bayes models in this study, despite lacking spatial information and potential pooling issues. However, performance comparison was based on three distinct datasets, limiting accurate assessment.
When selecting a model, dataset characteristics like size and complexity are crucial. Deep learning models excel in large datasets with intricate patterns, but require powerful GPUs. In contrast, traditional machine learning models thrive with smaller data volumes.
https://uk.linkedin.com/in/solomonegwu
(written by Solomon Egwu)
Media ContactCompany Name: Solomon Chidi EgwuContact Person: Solomon Chidi EgwuEmail: Send EmailCountry: United KingdomWebsite: https://github.com/solomonsquare
Read more from the original source:
Bridging the Gap: Machine Learning Applications for Brain Tumour ... - Digital Journal
- What Is Machine Learning? | How It Works, Techniques ... [Last Updated On: September 5th, 2019] [Originally Added On: September 5th, 2019]
- Start Here with Machine Learning [Last Updated On: September 22nd, 2019] [Originally Added On: September 22nd, 2019]
- What is Machine Learning? | Emerj [Last Updated On: October 1st, 2019] [Originally Added On: October 1st, 2019]
- Microsoft Azure Machine Learning Studio [Last Updated On: October 1st, 2019] [Originally Added On: October 1st, 2019]
- Machine Learning Basics | What Is Machine Learning? | Introduction To Machine Learning | Simplilearn [Last Updated On: October 1st, 2019] [Originally Added On: October 1st, 2019]
- What is Machine Learning? A definition - Expert System [Last Updated On: October 2nd, 2019] [Originally Added On: October 2nd, 2019]
- Machine Learning | Stanford Online [Last Updated On: October 2nd, 2019] [Originally Added On: October 2nd, 2019]
- How to Learn Machine Learning, The Self-Starter Way [Last Updated On: October 17th, 2019] [Originally Added On: October 17th, 2019]
- definition - What is machine learning? - Stack Overflow [Last Updated On: November 3rd, 2019] [Originally Added On: November 3rd, 2019]
- Artificial Intelligence vs. Machine Learning vs. Deep ... [Last Updated On: November 3rd, 2019] [Originally Added On: November 3rd, 2019]
- Machine Learning in R for beginners (article) - DataCamp [Last Updated On: November 3rd, 2019] [Originally Added On: November 3rd, 2019]
- Machine Learning | Udacity [Last Updated On: November 3rd, 2019] [Originally Added On: November 3rd, 2019]
- Machine Learning Artificial Intelligence | McAfee [Last Updated On: November 3rd, 2019] [Originally Added On: November 3rd, 2019]
- Machine Learning [Last Updated On: November 3rd, 2019] [Originally Added On: November 3rd, 2019]
- AI-based ML algorithms could increase detection of undiagnosed AF - Cardiac Rhythm News [Last Updated On: November 19th, 2019] [Originally Added On: November 19th, 2019]
- The Cerebras CS-1 computes deep learning AI problems by being bigger, bigger, and bigger than any other chip - TechCrunch [Last Updated On: November 19th, 2019] [Originally Added On: November 19th, 2019]
- Can the planet really afford the exorbitant power demands of machine learning? - The Guardian [Last Updated On: November 19th, 2019] [Originally Added On: November 19th, 2019]
- New InfiniteIO Platform Reduces Latency and Accelerates Performance for Machine Learning, AI and Analytics - Business Wire [Last Updated On: November 19th, 2019] [Originally Added On: November 19th, 2019]
- How to Use Machine Learning to Drive Real Value - eWeek [Last Updated On: November 19th, 2019] [Originally Added On: November 19th, 2019]
- Machine Learning As A Service Market to Soar from End-use Industries and Push Revenues in the 2025 - Downey Magazine [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Rad AI Raises $4M to Automate Repetitive Tasks for Radiologists Through Machine Learning - - HIT Consultant [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Machine Learning Improves Performance of the Advanced Light Source - Machine Design [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Synthetic Data: The Diamonds of Machine Learning - TDWI [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- The transformation of healthcare with AI and machine learning - ITProPortal [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Workday talks machine learning and the future of human capital management - ZDNet [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Machine Learning with R, Third Edition - Free Sample Chapters - Neowin [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Verification In The Era Of Autonomous Driving, Artificial Intelligence And Machine Learning - SemiEngineering [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Podcast: How artificial intelligence, machine learning can help us realize the value of all that genetic data we're collecting - Genetic Literacy... [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- The Real Reason Your School Avoids Machine Learning - The Tech Edvocate [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- Siri, Tell Fido To Stop Barking: What's Machine Learning, And What's The Future Of It? - 90.5 WESA [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- Microsoft reveals how it caught mutating Monero mining malware with machine learning - The Next Web [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- The role of machine learning in IT service management - ITProPortal [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- Global Director of Tech Exploration Discusses Artificial Intelligence and Machine Learning at Anheuser-Busch InBev - Seton Hall University News &... [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- The 10 Hottest AI And Machine Learning Startups Of 2019 - CRN: The Biggest Tech News For Partners And The IT Channel [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- Startup jobs of the week: Marketing Communications Specialist, Oracle Architect, Machine Learning Scientist - BetaKit [Last Updated On: November 30th, 2019] [Originally Added On: November 30th, 2019]
- Here's why machine learning is critical to success for banks of the future - Tech Wire Asia [Last Updated On: December 2nd, 2019] [Originally Added On: December 2nd, 2019]
- 3 questions to ask before investing in machine learning for pop health - Healthcare IT News [Last Updated On: December 8th, 2019] [Originally Added On: December 8th, 2019]
- Machine Learning Answers: If Caterpillar Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 8th, 2019] [Originally Added On: December 8th, 2019]
- Measuring Employee Engagement with A.I. and Machine Learning - Dice Insights [Last Updated On: December 8th, 2019] [Originally Added On: December 8th, 2019]
- Amazon Wants to Teach You Machine Learning Through Music? - Dice Insights [Last Updated On: December 8th, 2019] [Originally Added On: December 8th, 2019]
- Machine Learning Answers: If Nvidia Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 8th, 2019] [Originally Added On: December 8th, 2019]
- AI and machine learning platforms will start to challenge conventional thinking - CRN.in [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Machine Learning Answers: If Twitter Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Machine Learning Answers: If Seagate Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Machine Learning Answers: If BlackBerry Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Amazon Releases A New Tool To Improve Machine Learning Processes - Forbes [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Another free web course to gain machine-learning skills (thanks, Finland), NIST probes 'racist' face-recog and more - The Register [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Kubernetes and containers are the perfect fit for machine learning - JAXenter [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- TinyML as a Service and machine learning at the edge - Ericsson [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- AI and machine learning products - Cloud AI | Google Cloud [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Machine Learning | Blog | Microsoft Azure [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Machine Learning in 2019 Was About Balancing Privacy and Progress - ITPro Today [Last Updated On: December 25th, 2019] [Originally Added On: December 25th, 2019]
- CMSWire's Top 10 AI and Machine Learning Articles of 2019 - CMSWire [Last Updated On: December 25th, 2019] [Originally Added On: December 25th, 2019]
- Here's why digital marketing is as lucrative a career as data science and machine learning - Business Insider India [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- Dell's Latitude 9510 shakes up corporate laptops with 5G, machine learning, and thin bezels - PCWorld [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- Finally, a good use for AI: Machine-learning tool guesstimates how well your code will run on a CPU core - The Register [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- Cloud as the enabler of AI's competitive advantage - Finextra [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- Forget Machine Learning, Constraint Solvers are What the Enterprise Needs - - RTInsights [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- Informed decisions through machine learning will keep it afloat & going - Sea News [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- The Problem with Hiring Algorithms - Machine Learning Times - machine learning & data science news - The Predictive Analytics Times [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- New Program Supports Machine Learning in the Chemical Sciences and Engineering - Newswise [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- AI-System Flags the Under-Vaccinated in Israel - PrecisionVaccinations [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- New Contest: Train All The Things - Hackaday [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- AFTAs 2019: Best New Technology Introduced Over the Last 12 MonthsAI, Machine Learning and AnalyticsActiveViam - www.waterstechnology.com [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Educate Yourself on Machine Learning at this Las Vegas Event - Small Business Trends [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Seton Hall Announces New Courses in Text Mining and Machine Learning - Seton Hall University News & Events [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Looking at the most significant benefits of machine learning for software testing - The Burn-In [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Leveraging AI and Machine Learning to Advance Interoperability in Healthcare - - HIT Consultant [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Adventures With Artificial Intelligence and Machine Learning - Toolbox [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Five Reasons to Go to Machine Learning Week 2020 - Machine Learning Times - machine learning & data science news - The Predictive Analytics Times [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Uncover the Possibilities of AI and Machine Learning With This Bundle - Interesting Engineering [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Learning that Targets Millennial and Generation Z - HR Exchange Network [Last Updated On: January 23rd, 2020] [Originally Added On: January 23rd, 2020]
- Red Hat Survey Shows Hybrid Cloud, AI and Machine Learning are the Focus of Enterprises - Computer Business Review [Last Updated On: January 23rd, 2020] [Originally Added On: January 23rd, 2020]
- Vectorspace AI Datasets are Now Available to Power Machine Learning (ML) and Artificial Intelligence (AI) Systems in Collaboration with Elastic -... [Last Updated On: January 23rd, 2020] [Originally Added On: January 23rd, 2020]
- What is Machine Learning? | Types of Machine Learning ... [Last Updated On: January 23rd, 2020] [Originally Added On: January 23rd, 2020]
- How Machine Learning Will Lead to Better Maps - Popular Mechanics [Last Updated On: January 30th, 2020] [Originally Added On: January 30th, 2020]
- Jenkins Creator Launches Startup To Speed Software Testing with Machine Learning -- ADTmag - ADT Magazine [Last Updated On: January 30th, 2020] [Originally Added On: January 30th, 2020]
- An Open Source Alternative to AWS SageMaker - Datanami [Last Updated On: January 30th, 2020] [Originally Added On: January 30th, 2020]
- Machine Learning Could Aid Diagnosis of Barrett's Esophagus, Avoid Invasive Testing - Medical Bag [Last Updated On: January 30th, 2020] [Originally Added On: January 30th, 2020]
- OReilly and Formulatedby Unveil the Smart Cities & Mobility Ecosystems Conference - Yahoo Finance [Last Updated On: January 30th, 2020] [Originally Added On: January 30th, 2020]