Applications of Semi-supervised Learning part2(Machine Learning … – Medium

Author : Yue Fan, Anna Kukleva, Dengxin Dai, Bernt Schiele

Abstract : Semi-supervised learning (SSL) methods effectively leverage unlabeled data to improve model generalization. However, SSL models often underperform in open-set scenarios, where unlabeled data contain outliers from novel categories that do not appear in the labeled set. In this paper, we study the challenging and realistic open-set SSL setting, where the goal is to both correctly classify inliers and to detect outliers. Intuitively, the inlier classifier should be trained on inlier data only. However, we find that inlier classification performance can be largely improved by incorporating high-confidence pseudo-labeled data, regardless of whether they are inliers or outliers. Also, we propose to utilize non-linear transformations to separate the features used for inlier classification and outlier detection in the multi-task learning framework, preventing adverse effects between them. Additionally, we introduce pseudo-negative mining, which further boosts outlier detection performance. The three ingredients lead to what we call Simple but Strong Baseline (SSB) for open-set SSL. In experiments, SSB greatly improves both inlier classification and outlier detection performance, outperforming existing methods by a large margin. Our code will be released at https://github.com/YUE-FAN/SSB.

2.MSE-Nets: Multi-annotated Semi-supervised Ensemble Networks for Improving Segmentation of Medical Image with Ambiguous Boundaries (arXiv)

Author : Shuai Wang, Tengjin Weng, Jingyi Wang, Yang Shen, Zhidong Zhao, Yixiu Liu, Pengfei Jiao, Zhiming Cheng, Yaqi Wang

Abstract : Medical image segmentation annotations exhibit variations among experts due to the ambiguous boundaries of segmented objects and backgrounds in medical images. Although using multiple annotations for each image in the fully-supervised has been extensively studied for training deep models, obtaining a large amount of multi-annotated data is challenging due to the substantial time and manpower costs required for segmentation annotations, resulting in most images lacking any annotations. To address this, we propose Multi-annotated Semi-supervised Ensemble Networks (MSE-Nets) for learning segmentation from limited multi-annotated and abundant unannotated data. Specifically, we introduce the Network Pairwise Consistency Enhancement (NPCE) module and Multi-Network Pseudo Supervised (MNPS) module to enhance MSE-Nets for the segmentation task by considering two major factors: (1) to optimize the utilization of all accessible multi-annotated data, the NPCE separates (dis)agreement annotations of multi-annotated data at the pixel level and handles agreement and disagreement annotations in different ways, (2) to mitigate the introduction of imprecise pseudo-labels, the MNPS extends the training data by leveraging consistent pseudo-labels from unannotated data. Finally, we improve confidence calibration by averaging the predictions of base networks. Experiments on the ISIC dataset show that we reduced the demand for multi-annotated data by 97.75% and narrowed the gap with the best fully-supervised baseline to just a Jaccard index of 4%. Furthermore, compared to other semi-supervised methods that rely only on a single annotation or a combined fusion approach, the comprehensive experimental results on ISIC and RIGA datasets demonstrate the superior performance of our proposed method in medical image segmentation with ambiguous boundaries

Originally posted here:
Applications of Semi-supervised Learning part2(Machine Learning ... - Medium

Related Posts

Comments are closed.