This article is part of Deconstructing artificial intelligence, a series of posts that explore the details of how AI applications work (In partnership with Paperspace).
Deep neural networks have gained fame for their capability to process visual information. And in the past few years, they have become a key component of many computer vision applications.
Among the key problems neural networks can solve is detecting and localizing objects in images. Object detection is used in many different domains, including autonomous driving, video surveillance, and healthcare.
In this post, I will briefly review the deep learning architectures that help computers detect objects.
One of the key components of most deep learningbased computer vision applications is the convolutional neural network (CNN). Invented in the 1980s by deep learning pioneer Yann LeCun, CNNs are a type of neural network that is efficient at capturing patterns in multidimensional spaces. This makes CNNs especially good for images, though they are used to process other types of data too. (To focus on visual data, well consider our convolutional neural networks to be two-dimensional in this article.)
Every convolutional neural network is composed of one or several convolutional layers, a software component that extracts meaningful values from the input image. And every convolution layer is composed of several filters, square matrices that slide across the image and register the weighted sum of pixel values at different locations. Each filter has different values and extracts different features from the input image. The output of a convolution layer is a set of feature maps.
When stacked on top of each other, convolutional layers can detect a hierarchy of visual patterns. For instance, the lower layers will produce feature maps for vertical and horizontal edges, corners, and other simple patterns. The next layers can detect more complex patterns such as grids and circles. As you move deeper into the network, the layers will detect complicated objects such as cars, houses, trees, and people.
Most convolutional neural networks use pooling layers to gradually reduce the size of their feature maps and keep the most prominent parts. Max-pooling, which is currently the main type of pooling layer used in CNNs, keeps the maximum value in a patch of pixels. For example, if you use a pooling layer with a size 2, it will take 22-pixel patches from the feature maps produced by the preceding layer and keep the highest value. This operation halves the size of the maps and keeps the most relevant features. Pooling layers enable CNNs to generalize their capabilities and be less sensitive to the displacement of objects across images.
Finally, the output of the convolution layers is flattened into a single dimension matrix that is the numerical representation of the features contained in the image. That matrix is then fed into a series of fully connected layers of artificial neurons that map the features to the kind of output expected from the network.
The most basic task for convolutional neural networks is image classification, in which the network takes an image as input and returns a list of values that represent the probability that the image belongs to one of several classes. For example, say you want to train a neural network to detect all 1,000 classes of objects contained in the popular open-source dataset ImageNet. In that case, your output layer will have 1,000 numerical outputs, each of which contains the probability of the image belonging to one of those classes.
You can always create and test your own convolutional neural network from scratch. But most machine learning researchers and developers use one of several tried and tested convolutional neural networks such as AlexNet, VGG16, and ResNet-50.
While an image classification network can tell whether an image contains a certain object or not, it wont say where in the image the object is located. Object detection networks provide both the class of objects contained in an image and a bounding box that provides the coordinates of that object.
Object detection networks bear much resemblance to image classification networks and use convolution layers to detect visual features. In fact, most object detection networks use an image classification CNN and repurpose it for object detection.
Object detection is a supervised machine learning problem, which means you must train your models on labeled examples. Each image in the training dataset must be accompanied with a file that includes the boundaries and classes of the objects it contains. There are several open-source tools that create object detection annotations.
The object detection network is trained on the annotated data until it can find regions in images that correspond to each kind of object.
Now lets look at a few object-detection neural network architectures.
The Region-based Convolutional Neural Network (R-CNN) was proposed by AI researchers at the University of California, Berkley, in 2014. The R-CNN is composed of three key components.
First, a region selector uses selective search, algorithm that find regions of pixels in the image that might represent objects, also called regions of interest (RoI). The region selector generates around 2,000 regions of interest for each image.
Next, the RoIs are warped into a predefined size and passed on to a convolutional neural network. The CNN processes every region separately extracts the features through a series of convolution operations. The CNN uses fully connected layers to encode the feature maps into a single-dimensional vector of numerical values.
Finally, a classifier machine learning model maps the encoded features obtained from the CNN to the output classes. The classifier has a separate output class for background, which corresponds to anything that isnt an object.
The original R-CNN paper suggests the AlexNet convolutional neural network for feature extraction and a support vector machine (SVM) for classification. But in the years since the paper was published, researchers have used newer network architectures and classification models to improve the performance of R-CNN.
R-CNN suffers from a few problems. First, the model must generate and crop 2,000 separate regions for each image, which can take quite a while. Second, the model must compute the features for each of the 2,000 regions separately. This amounts to a lot of calculations and slows down the process, making R-CNN unsuitable for real-time object detection. And finally, the model is composed of three separate components, which makes it hard to integrate computations and improve speed.
In 2015, the lead author of the R-CNN paper proposed a new architecture called Fast R-CNN, which solved some of the problems of its predecessor. Fast R-CNN brings feature extraction and region selection into a single machine learning model.
Fast R-CNN receives an image and a set of RoIs and returns a list of bounding boxes and classes of the objects detected in the image.
One of the key innovations in Fast R-CNN was the RoI pooling layer, an operation that takes CNN feature maps and regions of interest for an image and provides the corresponding features for each region. This allowed Fast R-CNN to extract features for all the regions of interest in the image in a single pass as opposed to R-CNN, which processed each region separately. This resulted in a significant boost in speed.
However, one issue remained unsolved. Fast R-CNN still required the regions of the image to be extracted and provided as input to the model. Fast R-CNN was still not ready for real-time object detection.
[faster r-cnn architecture]
Faster R-CNN, introduced in 2016, solves the final piece of the object-detection puzzle by integrating the region extraction mechanism into the object detection network.
Faster R-CNN takes an image as input and returns a list of object classes and their corresponding bounding boxes.
The architecture of Faster R-CNN is largely similar to that of Fast R-CNN. Its main innovation is the region proposal network (RPN), a component that takes the feature maps produced by a convolutional neural network and proposes a set of bounding boxes where objects might be located. The proposed regions are then passed to the RoI pooling layer. The rest of the process is similar to Fast R-CNN.
By integrating region detection into the main neural network architecture, Faster R-CNN achieves near-real-time object detection speed.
In 2016, researchers at Washington University, Allen Institute for AI, and Facebook AI Research proposed You Only Look Once (YOLO), a family of neural networks that improved the speed and accuracy of object detection with deep learning.
The main improvement in YOLO is the integration of the entire object detection and classification process in a single network. Instead of extracting features and regions separately, YOLO performs everything in a single pass through a single network, hence the name You Only Look Once.
YOLO can perform object detection at video streaming framerates and is suitable applications that require real-time inference.
In the past few years, deep learning object detection has come a long way, evolving from a patchwork of different components to a single neural network that works efficiently. Today, many applications use object-detection networks as one of their main components. Its in your phone, computer, car, camera, and more. It will be interesting (and perhaps creepy) to see what can be achieved with increasingly advanced neural networks.
Read more here:
An introduction to object detection with deep learning - TechTalks
- What Is Machine Learning? | How It Works, Techniques ... [Last Updated On: September 5th, 2019] [Originally Added On: September 5th, 2019]
- Start Here with Machine Learning [Last Updated On: September 22nd, 2019] [Originally Added On: September 22nd, 2019]
- What is Machine Learning? | Emerj [Last Updated On: October 1st, 2019] [Originally Added On: October 1st, 2019]
- Microsoft Azure Machine Learning Studio [Last Updated On: October 1st, 2019] [Originally Added On: October 1st, 2019]
- Machine Learning Basics | What Is Machine Learning? | Introduction To Machine Learning | Simplilearn [Last Updated On: October 1st, 2019] [Originally Added On: October 1st, 2019]
- What is Machine Learning? A definition - Expert System [Last Updated On: October 2nd, 2019] [Originally Added On: October 2nd, 2019]
- Machine Learning | Stanford Online [Last Updated On: October 2nd, 2019] [Originally Added On: October 2nd, 2019]
- How to Learn Machine Learning, The Self-Starter Way [Last Updated On: October 17th, 2019] [Originally Added On: October 17th, 2019]
- definition - What is machine learning? - Stack Overflow [Last Updated On: November 3rd, 2019] [Originally Added On: November 3rd, 2019]
- Artificial Intelligence vs. Machine Learning vs. Deep ... [Last Updated On: November 3rd, 2019] [Originally Added On: November 3rd, 2019]
- Machine Learning in R for beginners (article) - DataCamp [Last Updated On: November 3rd, 2019] [Originally Added On: November 3rd, 2019]
- Machine Learning | Udacity [Last Updated On: November 3rd, 2019] [Originally Added On: November 3rd, 2019]
- Machine Learning Artificial Intelligence | McAfee [Last Updated On: November 3rd, 2019] [Originally Added On: November 3rd, 2019]
- Machine Learning [Last Updated On: November 3rd, 2019] [Originally Added On: November 3rd, 2019]
- AI-based ML algorithms could increase detection of undiagnosed AF - Cardiac Rhythm News [Last Updated On: November 19th, 2019] [Originally Added On: November 19th, 2019]
- The Cerebras CS-1 computes deep learning AI problems by being bigger, bigger, and bigger than any other chip - TechCrunch [Last Updated On: November 19th, 2019] [Originally Added On: November 19th, 2019]
- Can the planet really afford the exorbitant power demands of machine learning? - The Guardian [Last Updated On: November 19th, 2019] [Originally Added On: November 19th, 2019]
- New InfiniteIO Platform Reduces Latency and Accelerates Performance for Machine Learning, AI and Analytics - Business Wire [Last Updated On: November 19th, 2019] [Originally Added On: November 19th, 2019]
- How to Use Machine Learning to Drive Real Value - eWeek [Last Updated On: November 19th, 2019] [Originally Added On: November 19th, 2019]
- Machine Learning As A Service Market to Soar from End-use Industries and Push Revenues in the 2025 - Downey Magazine [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Rad AI Raises $4M to Automate Repetitive Tasks for Radiologists Through Machine Learning - - HIT Consultant [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Machine Learning Improves Performance of the Advanced Light Source - Machine Design [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Synthetic Data: The Diamonds of Machine Learning - TDWI [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- The transformation of healthcare with AI and machine learning - ITProPortal [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Workday talks machine learning and the future of human capital management - ZDNet [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Machine Learning with R, Third Edition - Free Sample Chapters - Neowin [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Verification In The Era Of Autonomous Driving, Artificial Intelligence And Machine Learning - SemiEngineering [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Podcast: How artificial intelligence, machine learning can help us realize the value of all that genetic data we're collecting - Genetic Literacy... [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- The Real Reason Your School Avoids Machine Learning - The Tech Edvocate [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- Siri, Tell Fido To Stop Barking: What's Machine Learning, And What's The Future Of It? - 90.5 WESA [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- Microsoft reveals how it caught mutating Monero mining malware with machine learning - The Next Web [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- The role of machine learning in IT service management - ITProPortal [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- Global Director of Tech Exploration Discusses Artificial Intelligence and Machine Learning at Anheuser-Busch InBev - Seton Hall University News &... [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- The 10 Hottest AI And Machine Learning Startups Of 2019 - CRN: The Biggest Tech News For Partners And The IT Channel [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- Startup jobs of the week: Marketing Communications Specialist, Oracle Architect, Machine Learning Scientist - BetaKit [Last Updated On: November 30th, 2019] [Originally Added On: November 30th, 2019]
- Here's why machine learning is critical to success for banks of the future - Tech Wire Asia [Last Updated On: December 2nd, 2019] [Originally Added On: December 2nd, 2019]
- 3 questions to ask before investing in machine learning for pop health - Healthcare IT News [Last Updated On: December 8th, 2019] [Originally Added On: December 8th, 2019]
- Machine Learning Answers: If Caterpillar Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 8th, 2019] [Originally Added On: December 8th, 2019]
- Measuring Employee Engagement with A.I. and Machine Learning - Dice Insights [Last Updated On: December 8th, 2019] [Originally Added On: December 8th, 2019]
- Amazon Wants to Teach You Machine Learning Through Music? - Dice Insights [Last Updated On: December 8th, 2019] [Originally Added On: December 8th, 2019]
- Machine Learning Answers: If Nvidia Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 8th, 2019] [Originally Added On: December 8th, 2019]
- AI and machine learning platforms will start to challenge conventional thinking - CRN.in [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Machine Learning Answers: If Twitter Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Machine Learning Answers: If Seagate Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Machine Learning Answers: If BlackBerry Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Amazon Releases A New Tool To Improve Machine Learning Processes - Forbes [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Another free web course to gain machine-learning skills (thanks, Finland), NIST probes 'racist' face-recog and more - The Register [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Kubernetes and containers are the perfect fit for machine learning - JAXenter [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- TinyML as a Service and machine learning at the edge - Ericsson [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- AI and machine learning products - Cloud AI | Google Cloud [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Machine Learning | Blog | Microsoft Azure [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Machine Learning in 2019 Was About Balancing Privacy and Progress - ITPro Today [Last Updated On: December 25th, 2019] [Originally Added On: December 25th, 2019]
- CMSWire's Top 10 AI and Machine Learning Articles of 2019 - CMSWire [Last Updated On: December 25th, 2019] [Originally Added On: December 25th, 2019]
- Here's why digital marketing is as lucrative a career as data science and machine learning - Business Insider India [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- Dell's Latitude 9510 shakes up corporate laptops with 5G, machine learning, and thin bezels - PCWorld [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- Finally, a good use for AI: Machine-learning tool guesstimates how well your code will run on a CPU core - The Register [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- Cloud as the enabler of AI's competitive advantage - Finextra [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- Forget Machine Learning, Constraint Solvers are What the Enterprise Needs - - RTInsights [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- Informed decisions through machine learning will keep it afloat & going - Sea News [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- The Problem with Hiring Algorithms - Machine Learning Times - machine learning & data science news - The Predictive Analytics Times [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- New Program Supports Machine Learning in the Chemical Sciences and Engineering - Newswise [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- AI-System Flags the Under-Vaccinated in Israel - PrecisionVaccinations [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- New Contest: Train All The Things - Hackaday [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- AFTAs 2019: Best New Technology Introduced Over the Last 12 MonthsAI, Machine Learning and AnalyticsActiveViam - www.waterstechnology.com [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Educate Yourself on Machine Learning at this Las Vegas Event - Small Business Trends [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Seton Hall Announces New Courses in Text Mining and Machine Learning - Seton Hall University News & Events [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Looking at the most significant benefits of machine learning for software testing - The Burn-In [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Leveraging AI and Machine Learning to Advance Interoperability in Healthcare - - HIT Consultant [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Adventures With Artificial Intelligence and Machine Learning - Toolbox [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Five Reasons to Go to Machine Learning Week 2020 - Machine Learning Times - machine learning & data science news - The Predictive Analytics Times [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Uncover the Possibilities of AI and Machine Learning With This Bundle - Interesting Engineering [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Learning that Targets Millennial and Generation Z - HR Exchange Network [Last Updated On: January 23rd, 2020] [Originally Added On: January 23rd, 2020]
- Red Hat Survey Shows Hybrid Cloud, AI and Machine Learning are the Focus of Enterprises - Computer Business Review [Last Updated On: January 23rd, 2020] [Originally Added On: January 23rd, 2020]
- Vectorspace AI Datasets are Now Available to Power Machine Learning (ML) and Artificial Intelligence (AI) Systems in Collaboration with Elastic -... [Last Updated On: January 23rd, 2020] [Originally Added On: January 23rd, 2020]
- What is Machine Learning? | Types of Machine Learning ... [Last Updated On: January 23rd, 2020] [Originally Added On: January 23rd, 2020]
- How Machine Learning Will Lead to Better Maps - Popular Mechanics [Last Updated On: January 30th, 2020] [Originally Added On: January 30th, 2020]
- Jenkins Creator Launches Startup To Speed Software Testing with Machine Learning -- ADTmag - ADT Magazine [Last Updated On: January 30th, 2020] [Originally Added On: January 30th, 2020]
- An Open Source Alternative to AWS SageMaker - Datanami [Last Updated On: January 30th, 2020] [Originally Added On: January 30th, 2020]
- Machine Learning Could Aid Diagnosis of Barrett's Esophagus, Avoid Invasive Testing - Medical Bag [Last Updated On: January 30th, 2020] [Originally Added On: January 30th, 2020]
- OReilly and Formulatedby Unveil the Smart Cities & Mobility Ecosystems Conference - Yahoo Finance [Last Updated On: January 30th, 2020] [Originally Added On: January 30th, 2020]