An artificial intelligence model for the radiographic diagnosis of … – Nature.com

Vina, E. R. & Kwoh, C. K. Epidemiology of osteoarthritis: Literature update. Curr. Opin. Rheumatol. 30(2), 160167 (2018).

Article PubMed PubMed Central Google Scholar

Quicke, J. G., Conaghan, P. G., Corp, N. & Peat, G. Osteoarthritis year in review 2021: Epidemiology and therapy. Osteoarthr. Cartil. 30(2), 196206 (2022).

Article CAS Google Scholar

Bianchi, J. et al. Osteoarthritis of the Temporomandibular Joint can be diagnosed earlier using biomarkers and machine learning. Sci. Rep. 10(1), 8012 (2020).

Article ADS CAS PubMed PubMed Central Google Scholar

Tanaka, E., Detamore, M. S. & Mercuri, L. G. Degenerative disorders of the temporomandibular joint: Etiology, diagnosis, and treatment. J. Dent. Res. 87(4), 296307 (2008).

Article CAS PubMed Google Scholar

Wang, X. D. et al. Deterioration of mechanical properties of discs in chronically inflamed TMJ. J. Dent. Res. 93(11), 11701176 (2014).

Article CAS PubMed PubMed Central Google Scholar

Jiao, K. et al. Subchondral bone loss following orthodontically induced cartilage degradation in the mandibular condyles of rats. Bone 48(2), 362371 (2011).

Article CAS PubMed Google Scholar

Greene, C. S. & Manfredini, D. Treating temporomandibular disorders in the 21st century: Can we finally eliminate the third pathway?. J. Oral Facial Pain Headache 34(3), 206216 (2020).

Article PubMed Google Scholar

Gonalves, D. A., Speciali, J. G., Jales, L. C., Camparis, C. M. & Bigal, M. E. Temporomandibular symptoms, migraine, and chronic daily headaches in the population. Neurology 73(8), 645646 (2009).

Article PubMed Google Scholar

Alketbi, N. & Talaat, W. Prevalence and characteristics of referred pain in patients diagnosed with temporomandibular disorders according to the Diagnostic Criteria for Temporomandibular Disorders (DC/TMD) in Sharjah, United Arab Emirates. F1000 Res. 11, 656 (2022).

CAS Google Scholar

Stegenga, B. Nomenclature and classification of temporomandibular joint disorders. J. Oral Rehabil. 37(10), 760765 (2010).

Article CAS PubMed Google Scholar

Choi, E., Kim, D., Lee, J. Y. & Park, H. K. Artificial intelligence in detecting temporomandibular joint osteoarthritis on orthopantomogram. Sci. Rep. 11(1), 10246 (2021).

Article ADS CAS PubMed PubMed Central Google Scholar

Jung, W., Lee, K. E., Suh, B. J., Seok, H. & Lee, D. W. Deep learning for osteoarthritis classification in temporomandibular joint. Oral Dis. 29(3), 10501059 (2023).

Article PubMed Google Scholar

Ahmad, M. et al. Research diagnostic criteria for temporomandibular disorders (RDC/TMD): Development of image analysis criteria and examiner reliability for image analysis. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 107(6), 844860 (2009).

Article PubMed PubMed Central Google Scholar

Schiffman, E. et al. Diagnostic criteria for temporomandibular disorders (DC/TMD) for clinical and research applications: Recommendations of the International RDC/TMD Consortium Network* and Orofacial Pain Special Interest Group. J. Oral Facial Pain Headache 28(1), 627 (2014).

Article PubMed PubMed Central Google Scholar

Asendorf, A. et al. Interexaminer reliability of the German version of the DC/TMD. J. Oral Rehabil. 48(1), 2834 (2021).

Article PubMed Google Scholar

Ohrbach, R. & Dworkin, S. F. The evolution of TMD diagnosis: Past, present, future. J. Dent. Res. 95(10), 10931101 (2016).

Article CAS PubMed PubMed Central Google Scholar

Tsai, C. M., Wu, F. Y., Chai, J. W., Chen, M. H. & Kao, C. T. The advantage of cone-beam computerized tomography over panoramic radiography and temporomandibular joint quadruple radiography in assessing temporomandibular joint osseous degenerative changes. J. Dent. Sci. 15(2), 153162 (2020).

Article PubMed PubMed Central Google Scholar

Lee, K. S., Jha, N. & Kim, Y. J. Risk factor assessments of temporomandibular disorders via machine learning. Sci. Rep. 11(1), 19802 (2021).

Article ADS CAS PubMed PubMed Central Google Scholar

Farook, T. H. & Dudley, J. Automation and deep (machine) learning in temporomandibular joint disorder radiomics: A systematic review. J. Oral Rehabil. 50(6), 501521 (2023).

Article PubMed Google Scholar

Vandenbroucke, J. P. et al. Strengthening the Reporting of Observational Studies in Epidemiology (STROBE): Explanation and elaboration. Int. J. Surg. 12(12), 15001524 (2014).

Article PubMed Google Scholar

Ohrbach, R., Larsson, P. & List, T. The jaw functional limitation scale: Development, reliability, and validity of 8-item and 20-item versions. J. Orofac. Pain 22(3), 219230 (2008).

PubMed Google Scholar

Gonzalez, Y. M. et al. Development of a brief and effective temporomandibular disorder pain screening questionnaire: Reliability and validity. J. Am. Dent. Assoc. 142(10), 11831191 (2011).

Article PubMed PubMed Central Google Scholar

Von Korff, M. et al. Graded chronic pain scale revised: Mild, bothersome, and high-impact chronic pain. Pain 161(3), 651661 (2020).

Article Google Scholar

Helkimo, M. Studies on function and dysfunction of the masticatory system. II. Index for anamnestic and clinical dysfunction and occlusal state. Sven. Tandlak. Tidskr. 67(2), 101121 (1974).

CAS PubMed Google Scholar

Talaat, W. M., Adel, O. I. & Al Bayatti, S. Prevalence of temporomandibular disorders discovered incidentally during routine dental examination using the Research Diagnostic Criteria for Temporomandibular Disorders. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 125(3), 250259 (2018).

Article PubMed Google Scholar

Talaat, S. et al. Improving the accuracy of publicly available search engines in recognizing and classifying dental visual assets using convolutional neural networks. Int. J. Comput. Dent. 23(3), 211218 (2020).

PubMed Google Scholar

Diwan, T., Anirudh, G. & Tembhurne, J. V. Object detection using YOLO: Challenges, architectural successors, datasets and applications. Multimed. Tools Appl. 82(6), 92439275 (2023).

Article PubMed Google Scholar

Karako, K., Chen, Y. & Tang, W. On medical application of neural networks trained with various types of data. Biosci. Trends 12(6), 553559 (2019).

Article PubMed Google Scholar

Talaat, W., Al Bayatti, S. & Al Kawas, S. CBCT analysis of bony changes associated with temporomandibular disorders. Cranio 34(2), 8894 (2016).

Article PubMed Google Scholar

de Boer, E. W., Dijkstra, P. U., Stegenga, B., de Bont, L. G. & Spijkervet, F. K. Value of cone-beam computed tomography in the process of diagnosis and management of disorders of the temporomandibular joint. Br. J. Oral Maxillofac. Surg. 52(3), 241246 (2014).

Article PubMed Google Scholar

Trp, J. C., Kowalski, C. J. & Stohler, C. S. Treatment-seeking patterns of facial pain patients: Many possibilities, limited satisfaction. J. Orofac. Pain 12(1), 6166 (1998).

PubMed Google Scholar

Beecroft, E. V., Durham, J. & Thomson, P. Retrospective examination of the healthcare journey of chronic orofacial pain patients referred to oral and maxillofacial surgery. Br. Dent. J. 214(5), E12 (2013).

Article CAS PubMed Google Scholar

Ahmad, M. & Schiffman, E. L. Temporomandibular joint disorders and orofacial pain. Dent. Clin. North Am. 60(1), 105124 (2016).

Article PubMed Google Scholar

Hiraiwa, T. et al. A deep-learning artificial intelligence system for assessment of root morphology of the mandibular first molar on panoramic radiography. Dentomaxillofac. Radiol. 48(3), 20180218 (2019).

Article PubMed Google Scholar

Bamba, Y. et al. Object and anatomical feature recognition in surgical video images based on a convolutional neural network. Int. J. Comput. Assist. Radiol. Surg. 16(11), 20452054 (2021).

Article PubMed PubMed Central Google Scholar

Kreiner, M. & Viloria, J. A novel artificial neural network for the diagnosis of orofacial pain and temporomandibular disorders. J. Oral Rehabil. 49(9), 884889 (2022).

Article PubMed Google Scholar

Shoukri, B. et al. Minimally invasive approach for diagnosing TMJ osteoarthritis. J. Dent. Res. 98(10), 11031111 (2019).

Article CAS PubMed PubMed Central Google Scholar

Nam, Y., Kim, H. G. & Kho, H. S. Differential diagnosis of jaw pain using informatics technology. J. Oral Rehabil. 45(8), 581588 (2018).

Article CAS PubMed Google Scholar

Srivastava, S. et al. Comparative analysis of deep learning image detection algorithms. J. Big Data 8, 66 (2021).

Article Google Scholar

Xuan, A. et al. The application of machine learning in early diagnosis of osteoarthritis: A narrative review. Ther. Adv. Musculoskelet. Dis. 15, 1759720X231158198 (2023).

Article PubMed PubMed Central Google Scholar

See original here:
An artificial intelligence model for the radiographic diagnosis of ... - Nature.com

Related Posts

Comments are closed.