A support vector machine (SVM) is defined as a machine learning algorithm that uses supervised learning models to solve complex classification, regression, and outlier detection problems by performing optimal data transformations that determine boundaries between data points based on predefined classes, labels, or outputs. This article explains the fundamentals of SVMs, their working, types, and a few real-world examples.
A support vector machine (SVM) is a machine learning algorithm that uses supervised learning models to solve complex classification, regression, and outlier detection problems by performing optimal data transformations that determine boundaries between data points based on predefined classes, labels, or outputs. SVMs are widely adopted across disciplines such as healthcare, natural language processing, signal processing applications, and speech & image recognition fields.
Technically, the primary objective of the SVM algorithm is to identify a hyperplane that distinguishably segregates the data points of different classes. The hyperplane is localized in such a manner that the largest margin separates the classes under consideration.
The support vector representation is shown in the figure below:
As seen in the above figure, the margin refers to the maximum width of the slice that runs parallel to the hyperplane without any internal support vectors. Such hyperplanes are easier to define for linearly separable problems; however, for real-life problems or scenarios, the SVM algorithm tries to maximize the margin between the support vectors, thereby giving rise to incorrect classifications for smaller sections of data points.
SVMs are potentially designed for binary classification problems. However, with the rise in computationally intensive multiclass problems, several binary classifiers are constructed and combined to formulate SVMs that can implement such multiclass classifications through binary means.
In the mathematical context, an SVM refers to a set of ML algorithms that use kernel methods to transform data features by employing kernel functions. Kernel functions rely on the process of mapping complex datasets to higher dimensions in a manner that makes data point separation easier. The function simplifies the data boundaries for non-linear problems by adding higher dimensions to map complex data points.
While introducing additional dimensions, the data is not entirely transformed as it can act as a computationally taxing process. This technique is usually referred to as the kernel trick, wherein data transformation into higher dimensions is achieved efficiently and inexpensively.
The idea behind the SVM algorithm was first captured in 1963 by Vladimir N. Vapnik and Alexey Ya. Chervonenkis. Since then, SVMs have gained enough popularity as they have continued to have wide-scale implications across several areas, including the protein sorting process, text categorization, facial recognition, autonomous cars, robotic systems, and so on.
See More: What Is a Neural Network? Definition, Working, Types, and Applications in 2022
The working of a support vector machine can be better understood through an example. Lets assume we have red and black labels with the features denoted by x and y. We intend to have a classifier for these tags that classifies data into either the red or black category.
Lets plot the labeled data on an x-y plane, as below:
A typical SVM separates these data points into red and black tags using the hyperplane, which is a two-dimensional line in this case. The hyperplane denotes the decision boundary line, wherein data points fall under the red or black category.
A hyperplane is defined as a line that tends to widen the margins between the two closest tags or labels (red and black). The distance of the hyperplane to the most immediate label is the largest, making the data classification easier.
The above scenario is applicable for linearly separable data. However, for non-linear data, a simple straight line cannot separate the distinct data points.
Heres an example of non-linear complex dataset data:
The above dataset reveals that a single hyperplane is not sufficient to separate the involved labels or tags. However, here, the vectors are visibly distinct, making segregating them easier.
For data classification, you need to add another dimension to the feature space. For linear data discussed until this point, two dimensions of x and y were sufficient. In this case, we add a z-dimension to better classify the data points. Moreover, for convenience, lets use the equation for a circle, z = x + y.
With the third dimension, the slice of feature space along the z-direction looks like this:
Now, with three dimensions, the hyperplane, in this case, runs parallel to the x-direction at a particular value of z; lets consider it as z=1.
The remaining data points are further mapped back to two dimensions.
The above figure reveals the boundary for data points along features x, y, and z along a circle of the circumference with radii of 1 unit that segregates two labels of tags via the SVM.
Lets consider another method of visualizing data points in three dimensions for separating two tags (two different colored tennis balls in this case). Consider the balls lying on a 2D plane surface. Now, if we lift the surface upward, all the tennis balls are distributed in the air. The two differently colored balls may separate in the air at one point in this process. While this occurs, you can use or place the surface between two segregated sets of balls.
In this entire process, the act of lifting the 2D surface refers to the event of mapping data into higher dimensions, which is technically referred to as kernelling, as mentioned earlier. In this way, complex data points can be separated with the help of more dimensions. The concept highlighted here is that the data points continue to get mapped into higher dimensions until a hyperplane is identified that shows a clear separation between the data points.
The figure below gives the 3D visualization of the above use case:
See More: Narrow AI vs. General AI vs. Super AI: Key Comparisons
Support vector machines are broadly classified into two types: simple or linear SVM and kernel or non-linear SVM.
A linear SVM refers to the SVM type used for classifying linearly separable data. This implies that when a dataset can be segregated into categories or classes with the help of a single straight line, it is termed a linear SVM, and the data is referred to as linearly distinct or separable. Moreover, the classifier that classifies such data is termed a linear SVM classifier.
A simple SVM is typically used to address classification and regression analysis problems.
Non-linear data that cannot be segregated into distinct categories with the help of a straight line is classified using a kernel or non-linear SVM. Here, the classifier is referred to as a non-linear classifier. The classification can be performed with a non-linear data type by adding features into higher dimensions rather than relying on 2D space. Here, the newly added features fit a hyperplane that helps easily separate classes or categories.
Kernel SVMs are typically used to handle optimization problems that have multiple variables.
See More: What is Sentiment Analysis? Definition, Tools, and Applications
SVMs rely on supervised learning methods to classify unknown data into known categories. These find applications in diverse fields.
Here, well look at some of the top real-world examples of SVMs:
The geo-sounding problem is one of the widespread use cases for SVMs, wherein the process is employed to track the planets layered structure. This entails solving the inversion problems where the observations or results of the issues are used to factor in the variables or parameters that produced them.
In the process, linear function and support vector algorithmic models separate the electromagnetic data. Moreover, linear programming practices are employed while developing the supervised models in this case. As the problem size is considerably small, the dimension size is inevitably tiny, which accounts for mapping the planets structure.
Soil liquefaction is a significant concern when events such as earthquakes occur. Assessing its potential is crucial while designing any civil infrastructure. SVMs play a key role in determining the occurrence and non-occurrence of such liquefaction aspects. Technically, SVMs handle two tests: SPT (Standard Penetration Test) and CPT (Cone Penetration Test), which use field data to adjudicate the seismic status.
Moreover, SVMs are used to develop models that involve multiple variables, such as soil factors and liquefaction parameters, to determine the ground surface strength. It is believed that SVMs achieve an accuracy of close to 96-97% for such applications.
Protein remote homology is a field of computational biology where proteins are categorized into structural and functional parameters depending on the sequence of amino acids when sequence identification is seemingly difficult. SVMs play a key role in remote homology, with kernel functions determining the commonalities between protein sequences.
Thus, SVMs play a defining role in computational biology.
SVMs are known to solve complex mathematical problems. However, smooth SVMs are preferred for data classification purposes, wherein smoothing techniques that reduce the data outliers and make the pattern identifiable are used.
Thus, for optimization problems, smooth SVMs use algorithms such as the Newton-Armijo algorithm to handle larger datasets that conventional SVMs cannot. Smooth SVM types typically explore math properties such as strong convexity for more straightforward data classification, even with non-linear data.
SVMs classify facial structures vs. non-facial ones. The training data uses two classes of face entity (denoted by +1) and non-face entity (denoted as -1) and n*n pixels to distinguish between face and non-face structures. Further, each pixel is analyzed, and the features from each one are extracted that denote face and non-face characters. Finally, the process creates a square decision boundary around facial structures based on pixel intensity and classifies the resultant images.
Moreover, SVMs are also used for facial expression classification, which includes expressions denoted as happy, sad, angry, surprised, and so on.
In the current scenario, SVMs are used for the classification of images of surfaces. Implying that the images clicked of surfaces can be fed into SVMs to determine the texture of surfaces in those images and classify them as smooth or gritty surfaces.
Text categorization refers to classifying data into predefined categories. For example, news articles contain politics, business, the stock market, or sports. Similarly, one can segregate emails into spam, non-spam, junk, and others.
Technically, each article or document is assigned a score, which is then compared to a predefined threshold value. The article is classified into its respective category depending on the evaluated score.
For handwriting recognition examples, the dataset containing passages that different individuals write is supplied to SVMs. Typically, SVM classifiers are trained with sample data initially and are later used to classify handwriting based on score values. Subsequently, SVMs are also used to segregate writings by humans and computers.
In speech recognition examples, words from speeches are individually picked and separated. Further, for each word, certain features and characteristics are extracted. Feature extraction techniques include Mel Frequency Cepstral Coefficients (MFCC), Linear Prediction Coefficients (LPC), Linear Prediction Cepstral Coefficients (LPCC), and others.
These methods collect audio data, feed it to SVMs and then train the models for speech recognition.
With SVMs, you can determine whether any digital image is tampered with, contaminated, or pure. Such examples are helpful when handling security-related matters for organizations or government agencies, as it is easier to encrypt and embed data as a watermark in high-resolution images.
Such images contain more pixels; hence, it can be challenging to spot hidden or watermarked messages. However, one solution is to separate each pixel and store data in different datasets that SVMs can later analyze.
Medical professionals, researchers, and scientists worldwide have been toiling hard to find a solution that can effectively detect cancer in its early stages. Today, several AI and ML tools are being deployed for the same. For example, in January 2020, Google developed an AI tool that helps in early breast cancer detection and reduces false positives and negatives.
In such examples, SVMs can be employed, wherein cancerous images can be supplied as input. SVM algorithms can analyze them, train the models, and eventually categorize the images that reveal malign or benign cancer features.
See More: What Is a Decision Tree? Algorithms, Template, Examples, and Best Practices
SVMs are crucial while developing applications that involve the implementation of predictive models. SVMs are easy to comprehend and deploy. They offer a sophisticated machine learning algorithm to process linear and non-linear data through kernels.
SVMs find applications in every domain and real-life scenarios where data is handled by adding higher dimensional spaces. This entails considering factors such as the tuning hyper-parameters, selecting the kernel for execution, and investing time and resources in the training phase, which help develop the supervised learning models.
Did this article help you understand the concept of support vector machines? Comment below or let us know on Facebook, Twitter, or LinkedIn. Wed love to hear from you!
Here is the original post:
All You Need to Know About Support Vector Machines - Spiceworks News and Insights
- What Is Machine Learning? | How It Works, Techniques ... [Last Updated On: September 5th, 2019] [Originally Added On: September 5th, 2019]
- Start Here with Machine Learning [Last Updated On: September 22nd, 2019] [Originally Added On: September 22nd, 2019]
- What is Machine Learning? | Emerj [Last Updated On: October 1st, 2019] [Originally Added On: October 1st, 2019]
- Microsoft Azure Machine Learning Studio [Last Updated On: October 1st, 2019] [Originally Added On: October 1st, 2019]
- Machine Learning Basics | What Is Machine Learning? | Introduction To Machine Learning | Simplilearn [Last Updated On: October 1st, 2019] [Originally Added On: October 1st, 2019]
- What is Machine Learning? A definition - Expert System [Last Updated On: October 2nd, 2019] [Originally Added On: October 2nd, 2019]
- Machine Learning | Stanford Online [Last Updated On: October 2nd, 2019] [Originally Added On: October 2nd, 2019]
- How to Learn Machine Learning, The Self-Starter Way [Last Updated On: October 17th, 2019] [Originally Added On: October 17th, 2019]
- definition - What is machine learning? - Stack Overflow [Last Updated On: November 3rd, 2019] [Originally Added On: November 3rd, 2019]
- Artificial Intelligence vs. Machine Learning vs. Deep ... [Last Updated On: November 3rd, 2019] [Originally Added On: November 3rd, 2019]
- Machine Learning in R for beginners (article) - DataCamp [Last Updated On: November 3rd, 2019] [Originally Added On: November 3rd, 2019]
- Machine Learning | Udacity [Last Updated On: November 3rd, 2019] [Originally Added On: November 3rd, 2019]
- Machine Learning Artificial Intelligence | McAfee [Last Updated On: November 3rd, 2019] [Originally Added On: November 3rd, 2019]
- Machine Learning [Last Updated On: November 3rd, 2019] [Originally Added On: November 3rd, 2019]
- AI-based ML algorithms could increase detection of undiagnosed AF - Cardiac Rhythm News [Last Updated On: November 19th, 2019] [Originally Added On: November 19th, 2019]
- The Cerebras CS-1 computes deep learning AI problems by being bigger, bigger, and bigger than any other chip - TechCrunch [Last Updated On: November 19th, 2019] [Originally Added On: November 19th, 2019]
- Can the planet really afford the exorbitant power demands of machine learning? - The Guardian [Last Updated On: November 19th, 2019] [Originally Added On: November 19th, 2019]
- New InfiniteIO Platform Reduces Latency and Accelerates Performance for Machine Learning, AI and Analytics - Business Wire [Last Updated On: November 19th, 2019] [Originally Added On: November 19th, 2019]
- How to Use Machine Learning to Drive Real Value - eWeek [Last Updated On: November 19th, 2019] [Originally Added On: November 19th, 2019]
- Machine Learning As A Service Market to Soar from End-use Industries and Push Revenues in the 2025 - Downey Magazine [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Rad AI Raises $4M to Automate Repetitive Tasks for Radiologists Through Machine Learning - - HIT Consultant [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Machine Learning Improves Performance of the Advanced Light Source - Machine Design [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Synthetic Data: The Diamonds of Machine Learning - TDWI [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- The transformation of healthcare with AI and machine learning - ITProPortal [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Workday talks machine learning and the future of human capital management - ZDNet [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Machine Learning with R, Third Edition - Free Sample Chapters - Neowin [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Verification In The Era Of Autonomous Driving, Artificial Intelligence And Machine Learning - SemiEngineering [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Podcast: How artificial intelligence, machine learning can help us realize the value of all that genetic data we're collecting - Genetic Literacy... [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- The Real Reason Your School Avoids Machine Learning - The Tech Edvocate [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- Siri, Tell Fido To Stop Barking: What's Machine Learning, And What's The Future Of It? - 90.5 WESA [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- Microsoft reveals how it caught mutating Monero mining malware with machine learning - The Next Web [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- The role of machine learning in IT service management - ITProPortal [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- Global Director of Tech Exploration Discusses Artificial Intelligence and Machine Learning at Anheuser-Busch InBev - Seton Hall University News &... [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- The 10 Hottest AI And Machine Learning Startups Of 2019 - CRN: The Biggest Tech News For Partners And The IT Channel [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- Startup jobs of the week: Marketing Communications Specialist, Oracle Architect, Machine Learning Scientist - BetaKit [Last Updated On: November 30th, 2019] [Originally Added On: November 30th, 2019]
- Here's why machine learning is critical to success for banks of the future - Tech Wire Asia [Last Updated On: December 2nd, 2019] [Originally Added On: December 2nd, 2019]
- 3 questions to ask before investing in machine learning for pop health - Healthcare IT News [Last Updated On: December 8th, 2019] [Originally Added On: December 8th, 2019]
- Machine Learning Answers: If Caterpillar Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 8th, 2019] [Originally Added On: December 8th, 2019]
- Measuring Employee Engagement with A.I. and Machine Learning - Dice Insights [Last Updated On: December 8th, 2019] [Originally Added On: December 8th, 2019]
- Amazon Wants to Teach You Machine Learning Through Music? - Dice Insights [Last Updated On: December 8th, 2019] [Originally Added On: December 8th, 2019]
- Machine Learning Answers: If Nvidia Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 8th, 2019] [Originally Added On: December 8th, 2019]
- AI and machine learning platforms will start to challenge conventional thinking - CRN.in [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Machine Learning Answers: If Twitter Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Machine Learning Answers: If Seagate Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Machine Learning Answers: If BlackBerry Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Amazon Releases A New Tool To Improve Machine Learning Processes - Forbes [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Another free web course to gain machine-learning skills (thanks, Finland), NIST probes 'racist' face-recog and more - The Register [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Kubernetes and containers are the perfect fit for machine learning - JAXenter [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- TinyML as a Service and machine learning at the edge - Ericsson [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- AI and machine learning products - Cloud AI | Google Cloud [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Machine Learning | Blog | Microsoft Azure [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Machine Learning in 2019 Was About Balancing Privacy and Progress - ITPro Today [Last Updated On: December 25th, 2019] [Originally Added On: December 25th, 2019]
- CMSWire's Top 10 AI and Machine Learning Articles of 2019 - CMSWire [Last Updated On: December 25th, 2019] [Originally Added On: December 25th, 2019]
- Here's why digital marketing is as lucrative a career as data science and machine learning - Business Insider India [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- Dell's Latitude 9510 shakes up corporate laptops with 5G, machine learning, and thin bezels - PCWorld [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- Finally, a good use for AI: Machine-learning tool guesstimates how well your code will run on a CPU core - The Register [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- Cloud as the enabler of AI's competitive advantage - Finextra [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- Forget Machine Learning, Constraint Solvers are What the Enterprise Needs - - RTInsights [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- Informed decisions through machine learning will keep it afloat & going - Sea News [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- The Problem with Hiring Algorithms - Machine Learning Times - machine learning & data science news - The Predictive Analytics Times [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- New Program Supports Machine Learning in the Chemical Sciences and Engineering - Newswise [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- AI-System Flags the Under-Vaccinated in Israel - PrecisionVaccinations [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- New Contest: Train All The Things - Hackaday [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- AFTAs 2019: Best New Technology Introduced Over the Last 12 MonthsAI, Machine Learning and AnalyticsActiveViam - www.waterstechnology.com [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Educate Yourself on Machine Learning at this Las Vegas Event - Small Business Trends [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Seton Hall Announces New Courses in Text Mining and Machine Learning - Seton Hall University News & Events [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Looking at the most significant benefits of machine learning for software testing - The Burn-In [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Leveraging AI and Machine Learning to Advance Interoperability in Healthcare - - HIT Consultant [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Adventures With Artificial Intelligence and Machine Learning - Toolbox [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Five Reasons to Go to Machine Learning Week 2020 - Machine Learning Times - machine learning & data science news - The Predictive Analytics Times [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Uncover the Possibilities of AI and Machine Learning With This Bundle - Interesting Engineering [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Learning that Targets Millennial and Generation Z - HR Exchange Network [Last Updated On: January 23rd, 2020] [Originally Added On: January 23rd, 2020]
- Red Hat Survey Shows Hybrid Cloud, AI and Machine Learning are the Focus of Enterprises - Computer Business Review [Last Updated On: January 23rd, 2020] [Originally Added On: January 23rd, 2020]
- Vectorspace AI Datasets are Now Available to Power Machine Learning (ML) and Artificial Intelligence (AI) Systems in Collaboration with Elastic -... [Last Updated On: January 23rd, 2020] [Originally Added On: January 23rd, 2020]
- What is Machine Learning? | Types of Machine Learning ... [Last Updated On: January 23rd, 2020] [Originally Added On: January 23rd, 2020]
- How Machine Learning Will Lead to Better Maps - Popular Mechanics [Last Updated On: January 30th, 2020] [Originally Added On: January 30th, 2020]
- Jenkins Creator Launches Startup To Speed Software Testing with Machine Learning -- ADTmag - ADT Magazine [Last Updated On: January 30th, 2020] [Originally Added On: January 30th, 2020]
- An Open Source Alternative to AWS SageMaker - Datanami [Last Updated On: January 30th, 2020] [Originally Added On: January 30th, 2020]
- Machine Learning Could Aid Diagnosis of Barrett's Esophagus, Avoid Invasive Testing - Medical Bag [Last Updated On: January 30th, 2020] [Originally Added On: January 30th, 2020]
- OReilly and Formulatedby Unveil the Smart Cities & Mobility Ecosystems Conference - Yahoo Finance [Last Updated On: January 30th, 2020] [Originally Added On: January 30th, 2020]