In this multicenter study, we designed a prediction model based on ML to accurately assessment liver fibrosis stages of CHB patients. Compared with traditional statistical models such as APRI or FIB-4, and ML model demonstrated significant improvements and was easy to process, which also suggested the great potential of ML in the field of noninvasive liver fibrosis evaluation. In addition, our study results indicated that ML model provided similar diagnostic efficacy with the reference standard liver biopsy, which may provide a reliable theoretical basis for the further development of simple, easy-to-use and accurate tools for the evaluation of liver fibrosis.
In this study, we used ML methods with the hope of more accurately assessing the staging of liver fibrosis, thereby improving the accuracy of the model. The final results revealed that our model showed superior accuracy compared to traditional serological models such as APRI or FIB-4. It is also significantly higher than the diagnostic efficacy of seventeen noninvasive liver fibrosis models in Chinese patients with hepatitis B mentioned in the study of Li et al.19. In addition, stratification analysis in inflammation subgroups was performed, and the results did show no significant impact on the performance of ML model. These findings suggest that ML model may overcome the influence of inflammation for cirrhosis evaluation, which is likely to be a potential breakthrough in non-invasive diagnosis. This was helped by a new approach to model building that had the following main advantages. First, we compared the performance of models constructed by several ML methods, and then we focused on and validated the DT model because of its better performance and ease of use. In fact, the DT model has been applied to evaluate hepatitis C liver fibrosis and has shown significant performance20. In addition, previous studies mainly used a classification method (logistic regression analysis)21, and features were selected through univariate tests (t tests, Welch tests, etc.) in many patients22,23. However, this method is often overly optimistic, prone to overfitting, and difficult to reproduce. To overcome these problems, we used integration algorithms, including mRMR and GBDT, to remove redundant features to prevent multicollinearity, and we used only high-scoring variables to construct prediction models to avoid overfitting. Second, our model allows patients to be assessed by a single blood draw without the need for additional modalities. This concept is particularly attractive for routine screening of people at high risk of disease development, such as those with advanced or severe liver fibrosis, in primary care settings. These cases which clinically suspected severe liver fibrosis previously required puncture pathology to be confirmed. However, now only need to routine serological examination to judge the probability of severe liver fibrosis, so invasive puncture examination can be avoided. Therefore, it has obvious advantages in terms of cost and prognosis. In addition, our method can be used to construct a similar model visualization to distinguish early liver fibrosis from significant liver fibrosis, and does not require specially trained clinicians, which is more convenient for clinicians in practice and of great value for clinical promotion.
In this study, we also hoped to improve the diagnostic performance of the model by identifying more specific markers and constructing the model based on the combination of known serologically relevant features. We integrated some of the most routine serological markers, in contrast to Zeng et al., who used laboratory markers such as B2-macroglobulin, haptoglobin and apolipoprotein A1, which are not commonly used in most hospitals24. Although these laboratory markers may show higher accuracy than routine serological markers, they are not suitable for practical clinical application. Our results showed of the five conventional serological markers used to construct the ML model, HBV-DNA had the greatest contribution to the model, which is consistent with the recommendation of some guidelines that patients with high HBV-DNA levels should be evaluated for noninvasive liver fibrosis4,25. HBV DNA is the marker for viral replication. For chronic HBV infection, the development of the disease is a dynamic process, and the infection status also exists for a long time. For patients with chronic HBV infection in the indeterminate phase, the results of examination alone may not be able to accurately assess the natural history stage, so dynamic follow-up observation is needed. Studies have shown that HBV DNA levels correlated with significant fibrosis in HBeAg() CHB patients. HBV DNA level could predict liver fibrosis in HBeAg() CHB patients with biopsy indication26,27.
In addition, two coagulation factors including INR and TT were integrated into the model, although the two coagulation factors are closely related in clinical practice28,29, which was may lead to over fitting of the model and overestimate the role of coagulation factors. However, we calculated the VIF value of relevant factors and did not show collinearity. Therefore, we speculate that the contribution of coagulation factors to the model should not be overestimated.
It is well known that distinguishing F0-1 from F2-4 is more challenging in many studies30,31, which is because the heterogeneity of liver fibrosis in patients with F2 liver fibrosis is more serious than that in those with F3 and 4 liver fibrosis, which generally reduces the accuracy of all classification strategies. In fact, our research results confirm that DT model has the lowest accuracy (AUC of 0.891 in training cohort and AUC of 0.876 in Validation cohort) in identifying patients with liver fibrosis grade F2. However, DT model shows high accuracy and excellent stability for each fibrosis grade in two cohorts, especially in identifying liver cirrhosis (F4), which was shows this model could be used to refine phenotypes in large research studies. Our study result also showed that the highest overall recognition rate for patients with liver cirrhosis (F4) was higher than that for patients with other stages of liver fibrosis when the model was used to classify risk prediction in the two cohorts or the whole cohort. These results suggested that our ML model may be part of a more accurate preclinical detection pathway to assess liver cirrhosis and may be used for the screening and treatment of liver cirrhosis in HBV-infected patients in routine clinical environments, although this needs to be validated in prospective studies.
This study has some limitations. First, this study was a retrospective study, which may lead to the simulation of retrospective statistics depending on too many assumptions. Future research should focus on the development of prediction and classification models based on prospective research, which will allow time evolution information to be used to evaluate, modify and reevaluate prediction models. Second, the model itself needs to be further optimized through better engineering and further development through more comprehensive integration of other clinical data to improve the overall performance of the model and achieve a more accurate noninvasive diagnosis of liver fibrosis staging. Finally, our study did not investigate the performance of ML model for classifying patients with CHB of different ethnic populations, which are also worthy of further studies in the future. Of course, in this study, we still emphasize that as conceptual research, it can still provide a certain basis for the real clinical practice in the future, although this future still needs a long way to go.
In conclusion, this study demonstrated that ML model was more accurate than traditional serological mixed biomarkers in assessing all four liver fibrosis stages in patients with CHB. In addition, the results of this study promote the goal of assessing liver fibrosis in CHB patients and improving the existing prognostic models, thereby facilitating a future prospective study design and evaluation and clinical disease surveillance and treatment. We also hope to further refine and expand this work to clarify the application of this model to a wider range of liver fibrotic diseases.
Follow this link:
A machine learning-based model analysis for serum markers of liver fibrosis in chronic hepatitis B patients | Scientific ... - Nature.com
- What Is Machine Learning? | How It Works, Techniques ... [Last Updated On: September 5th, 2019] [Originally Added On: September 5th, 2019]
- Start Here with Machine Learning [Last Updated On: September 22nd, 2019] [Originally Added On: September 22nd, 2019]
- What is Machine Learning? | Emerj [Last Updated On: October 1st, 2019] [Originally Added On: October 1st, 2019]
- Microsoft Azure Machine Learning Studio [Last Updated On: October 1st, 2019] [Originally Added On: October 1st, 2019]
- Machine Learning Basics | What Is Machine Learning? | Introduction To Machine Learning | Simplilearn [Last Updated On: October 1st, 2019] [Originally Added On: October 1st, 2019]
- What is Machine Learning? A definition - Expert System [Last Updated On: October 2nd, 2019] [Originally Added On: October 2nd, 2019]
- Machine Learning | Stanford Online [Last Updated On: October 2nd, 2019] [Originally Added On: October 2nd, 2019]
- How to Learn Machine Learning, The Self-Starter Way [Last Updated On: October 17th, 2019] [Originally Added On: October 17th, 2019]
- definition - What is machine learning? - Stack Overflow [Last Updated On: November 3rd, 2019] [Originally Added On: November 3rd, 2019]
- Artificial Intelligence vs. Machine Learning vs. Deep ... [Last Updated On: November 3rd, 2019] [Originally Added On: November 3rd, 2019]
- Machine Learning in R for beginners (article) - DataCamp [Last Updated On: November 3rd, 2019] [Originally Added On: November 3rd, 2019]
- Machine Learning | Udacity [Last Updated On: November 3rd, 2019] [Originally Added On: November 3rd, 2019]
- Machine Learning Artificial Intelligence | McAfee [Last Updated On: November 3rd, 2019] [Originally Added On: November 3rd, 2019]
- Machine Learning [Last Updated On: November 3rd, 2019] [Originally Added On: November 3rd, 2019]
- AI-based ML algorithms could increase detection of undiagnosed AF - Cardiac Rhythm News [Last Updated On: November 19th, 2019] [Originally Added On: November 19th, 2019]
- The Cerebras CS-1 computes deep learning AI problems by being bigger, bigger, and bigger than any other chip - TechCrunch [Last Updated On: November 19th, 2019] [Originally Added On: November 19th, 2019]
- Can the planet really afford the exorbitant power demands of machine learning? - The Guardian [Last Updated On: November 19th, 2019] [Originally Added On: November 19th, 2019]
- New InfiniteIO Platform Reduces Latency and Accelerates Performance for Machine Learning, AI and Analytics - Business Wire [Last Updated On: November 19th, 2019] [Originally Added On: November 19th, 2019]
- How to Use Machine Learning to Drive Real Value - eWeek [Last Updated On: November 19th, 2019] [Originally Added On: November 19th, 2019]
- Machine Learning As A Service Market to Soar from End-use Industries and Push Revenues in the 2025 - Downey Magazine [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Rad AI Raises $4M to Automate Repetitive Tasks for Radiologists Through Machine Learning - - HIT Consultant [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Machine Learning Improves Performance of the Advanced Light Source - Machine Design [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Synthetic Data: The Diamonds of Machine Learning - TDWI [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- The transformation of healthcare with AI and machine learning - ITProPortal [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Workday talks machine learning and the future of human capital management - ZDNet [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Machine Learning with R, Third Edition - Free Sample Chapters - Neowin [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Verification In The Era Of Autonomous Driving, Artificial Intelligence And Machine Learning - SemiEngineering [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Podcast: How artificial intelligence, machine learning can help us realize the value of all that genetic data we're collecting - Genetic Literacy... [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- The Real Reason Your School Avoids Machine Learning - The Tech Edvocate [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- Siri, Tell Fido To Stop Barking: What's Machine Learning, And What's The Future Of It? - 90.5 WESA [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- Microsoft reveals how it caught mutating Monero mining malware with machine learning - The Next Web [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- The role of machine learning in IT service management - ITProPortal [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- Global Director of Tech Exploration Discusses Artificial Intelligence and Machine Learning at Anheuser-Busch InBev - Seton Hall University News &... [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- The 10 Hottest AI And Machine Learning Startups Of 2019 - CRN: The Biggest Tech News For Partners And The IT Channel [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- Startup jobs of the week: Marketing Communications Specialist, Oracle Architect, Machine Learning Scientist - BetaKit [Last Updated On: November 30th, 2019] [Originally Added On: November 30th, 2019]
- Here's why machine learning is critical to success for banks of the future - Tech Wire Asia [Last Updated On: December 2nd, 2019] [Originally Added On: December 2nd, 2019]
- 3 questions to ask before investing in machine learning for pop health - Healthcare IT News [Last Updated On: December 8th, 2019] [Originally Added On: December 8th, 2019]
- Machine Learning Answers: If Caterpillar Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 8th, 2019] [Originally Added On: December 8th, 2019]
- Measuring Employee Engagement with A.I. and Machine Learning - Dice Insights [Last Updated On: December 8th, 2019] [Originally Added On: December 8th, 2019]
- Amazon Wants to Teach You Machine Learning Through Music? - Dice Insights [Last Updated On: December 8th, 2019] [Originally Added On: December 8th, 2019]
- Machine Learning Answers: If Nvidia Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 8th, 2019] [Originally Added On: December 8th, 2019]
- AI and machine learning platforms will start to challenge conventional thinking - CRN.in [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Machine Learning Answers: If Twitter Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Machine Learning Answers: If Seagate Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Machine Learning Answers: If BlackBerry Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Amazon Releases A New Tool To Improve Machine Learning Processes - Forbes [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Another free web course to gain machine-learning skills (thanks, Finland), NIST probes 'racist' face-recog and more - The Register [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Kubernetes and containers are the perfect fit for machine learning - JAXenter [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- TinyML as a Service and machine learning at the edge - Ericsson [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- AI and machine learning products - Cloud AI | Google Cloud [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Machine Learning | Blog | Microsoft Azure [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Machine Learning in 2019 Was About Balancing Privacy and Progress - ITPro Today [Last Updated On: December 25th, 2019] [Originally Added On: December 25th, 2019]
- CMSWire's Top 10 AI and Machine Learning Articles of 2019 - CMSWire [Last Updated On: December 25th, 2019] [Originally Added On: December 25th, 2019]
- Here's why digital marketing is as lucrative a career as data science and machine learning - Business Insider India [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- Dell's Latitude 9510 shakes up corporate laptops with 5G, machine learning, and thin bezels - PCWorld [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- Finally, a good use for AI: Machine-learning tool guesstimates how well your code will run on a CPU core - The Register [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- Cloud as the enabler of AI's competitive advantage - Finextra [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- Forget Machine Learning, Constraint Solvers are What the Enterprise Needs - - RTInsights [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- Informed decisions through machine learning will keep it afloat & going - Sea News [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- The Problem with Hiring Algorithms - Machine Learning Times - machine learning & data science news - The Predictive Analytics Times [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- New Program Supports Machine Learning in the Chemical Sciences and Engineering - Newswise [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- AI-System Flags the Under-Vaccinated in Israel - PrecisionVaccinations [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- New Contest: Train All The Things - Hackaday [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- AFTAs 2019: Best New Technology Introduced Over the Last 12 MonthsAI, Machine Learning and AnalyticsActiveViam - www.waterstechnology.com [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Educate Yourself on Machine Learning at this Las Vegas Event - Small Business Trends [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Seton Hall Announces New Courses in Text Mining and Machine Learning - Seton Hall University News & Events [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Looking at the most significant benefits of machine learning for software testing - The Burn-In [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Leveraging AI and Machine Learning to Advance Interoperability in Healthcare - - HIT Consultant [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Adventures With Artificial Intelligence and Machine Learning - Toolbox [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Five Reasons to Go to Machine Learning Week 2020 - Machine Learning Times - machine learning & data science news - The Predictive Analytics Times [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Uncover the Possibilities of AI and Machine Learning With This Bundle - Interesting Engineering [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Learning that Targets Millennial and Generation Z - HR Exchange Network [Last Updated On: January 23rd, 2020] [Originally Added On: January 23rd, 2020]
- Red Hat Survey Shows Hybrid Cloud, AI and Machine Learning are the Focus of Enterprises - Computer Business Review [Last Updated On: January 23rd, 2020] [Originally Added On: January 23rd, 2020]
- Vectorspace AI Datasets are Now Available to Power Machine Learning (ML) and Artificial Intelligence (AI) Systems in Collaboration with Elastic -... [Last Updated On: January 23rd, 2020] [Originally Added On: January 23rd, 2020]
- What is Machine Learning? | Types of Machine Learning ... [Last Updated On: January 23rd, 2020] [Originally Added On: January 23rd, 2020]
- How Machine Learning Will Lead to Better Maps - Popular Mechanics [Last Updated On: January 30th, 2020] [Originally Added On: January 30th, 2020]
- Jenkins Creator Launches Startup To Speed Software Testing with Machine Learning -- ADTmag - ADT Magazine [Last Updated On: January 30th, 2020] [Originally Added On: January 30th, 2020]
- An Open Source Alternative to AWS SageMaker - Datanami [Last Updated On: January 30th, 2020] [Originally Added On: January 30th, 2020]
- Machine Learning Could Aid Diagnosis of Barrett's Esophagus, Avoid Invasive Testing - Medical Bag [Last Updated On: January 30th, 2020] [Originally Added On: January 30th, 2020]
- OReilly and Formulatedby Unveil the Smart Cities & Mobility Ecosystems Conference - Yahoo Finance [Last Updated On: January 30th, 2020] [Originally Added On: January 30th, 2020]