In this section, we discuss the outcomes produced by different machine learning models, aiming to compare and determine the most effective model for predicting cerebral aneurysm rupture based on 35 morphological and 3 clinical inputs. The evaluation criteria include accuracy for the train and test datasets, recall, precision, and accuracy for the test dataset and the receiver characteristic operation (ROC) curve. Following these evaluations for each model, we discuss the most significant features identified by the models. We aim to shed light on the correlation between each parameter and the rupture status of cerebral aneurysms. This analysis provides a comprehensive understanding of the influential factors contributing to the accurate prediction of aneurysm rupture.
The main metric for evaluating model performance and enabling comparisons between different models is accuracy, which is measured on both the train and test datasets. Accuracy is defined as the ratio of correctly predicted cases to all predicted cases. It is important to note that while high accuracy is desirable, achieving 100% accuracy is not optimal, as it may indicate overfitting and a lack of generalization to unseen data. Ideally, the train and test datasets should have similar accuracy, with a recommended maximum difference of 10%. In Fig.5, we present the accuracy results for all models. It is evident that all models can achieve an accuracy exceeding 0.70. XGB demonstrates the highest accuracy at 0.91, while KNN exhibits the lowest accuracy at 0.74. Assessing the generalizability of the models to new data, both MLP and SVM demonstrated superior performance, achieving an accuracy of 0.82 for the test dataset. This indicates that MLP and SVM outperform the other models in terms of predictive accuracy for unseen data.
Accuracy of train and test datasets.
In addition to accuracy, we included precision and recall as important metrics to comprehensively evaluate model performance. We made this decision due to the sensitivity of the medical data under consideration, emphasizing the importance of timely disease recognition. In simple terms, recall measures the models ability to correctly identify the presence of a disease. Recall is defined as the ratio of true positive predictions to the total number of actual positive cases. Similarly, precision reflects the models ability to accurately predict positive occurrences. Precision is defined as the ratio of true positive predictions to the total number of predicted positive cases.
In the medical context, recall holds particular significance, but accuracy and precision should not be overlooked, as they collectively contribute to overall model efficacy. Figure6 presents the evaluation of all three metrics (accuracy, precision, and recall) for the test dataset, with a specific focus on the ruptured class, representing the occurrence scenario in our study. SVM and MLP are the top-performing models once again. The results show that SVM and MLP have high recall rates of 0.92 and 0.90, respectively, in predicting the occurrence of cerebral aneurysm rupture. SVM also has an accuracy and precision of 0.82, whereas MLP has a precision of 0.83 and an accuracy of 0.82. In contrast, RF performed relatively poorly in all three criteria. However, it is noteworthy that even for RF, all performance metrics for the test dataset exceeded 0.75, indicating a high level of predictive capability.
Accuracy, precision, and recall for the test dataset.
Another metric used for evaluation is the ROC curve, which illustrates the true positive rate versus the false positive rate. Linear behavior, where the true and false positive rates are equal, represents a random classifier. As the model improves, the curve shifts toward the upper-left point. An ideal model would have a true positive rate of 1 and a false positive rate of 0. The area under the curve (AUC) is a representative measure of the models performance, with an AUC of 0.5 indicating a random classifier and an AUC of 1 indicating an ideal classifier. Figure7 presents the behavior of the ROC curve for each model, along with the corresponding AUC. Based on these criteria, SVM and MLP are the top-performing models engaged in close competition. Their ROC curves exhibit a favorable trajectory, and their AUC values affirm their strong performance. Conversely, RF demonstrates a comparatively poorer performance than the other models. In summary, all models demonstrate highly acceptable performance and scores. Optimizing these models to improve their reliability and effectiveness in predicting cerebral aneurysm rupture represents a valuable endeavor.
Receiver operating characteristic (ROC) curve for all models.
Given that each machine learning model employs a unique set of algorithms and mathematical relations, a difference in the weight assigned to each parameter for the final classification decision is expected. Figure8 displays the weights of each parameter for the two top-performing models in this study. The SVM model identifies the first five dominant features as EI (Ellipticity Index), SR (Size Ratio), I (Irregularity), UI (Undulation Index), and IR (Ideal Roundness), a new parameter introduced in this study. The MLP model, on the other hand, prioritizes EI, I, Location, NA (Neck Area), and IR, with IR once again demonstrating a significant impact.
Dominant Features for the two top-performing models.
Other novel parameters introduced in this study include NC, IS, ON, IRR, COD, ISR, and IOR, which occupy positions 6, 9, 13, 19, 27, 30, and 36, respectively, for SVM. For the MLP model, the order of these new parameters is IR (5), NC (7), ON (18), IS (24), ISR (27), COD (32), IOR (34), and IRR (38). Notably, some parameters for the MLP model exhibit negative values, indicating an inverse effect on the models prediction and an inverse correlation with the output. It is important to acknowledge that this pattern may vary depending on the architecture used for the MLP model.
One potential question that may arise in this study is whether bifurcation aneurysms are more prone to rupture than lateral aneurysms, based on physicians experience. However, our study does not show a significant contribution from this factor. This discrepancy does not imply that the bifurcation and lateral status are insignificant. Instead, it highlights that when other features are considered alongside this parameter, there is a stronger correlation among other parameters than with this specific one. Essentially, by expanding our input variables and making decisions based on more comprehensive information, we uncover the significance of parameters that may not have been previously considered. Thanks to modern machine learning models, it is now possible to compare several parameters simultaneously and discern the contribution of each in relation to others. This approach allows for more reliable decision-making by considering a broader set of factors and better understanding the complex interplay of variables that contribute to the prediction of cerebral aneurysm rupture.
We now undertake a brief comparison between prior research and the current study, focusing specifically on the testing datasets used across all studies. To facilitate this analysis, we refer to which presents the outcomes of six comparable studies alongside those of our own investigation. As previously indicated, we endeavored to incorporate a comprehensive array of morphological parameters to ensure the robustness of our findings.
As the scope of parameters considered expands, shifts in the relative importance assigned to each parameter are anticipated. Furthermore, increasing the size of the dataset can enhance the reliability of the results. Among the parameters of significance, the size ratio emerges as a recurrent focal point, underscoring its inherent importance in assessing the risk of rupture. Once more, we underscore the significance of the recall score, given the sensitivity inherent in medical data. It is noteworthy that our study achieves an outstanding recall score, a metric that is unfortunately absent from prior studies, thus limiting direct comparison.
Table 3, which presents the outcomes of six comparable studies alongside those of our own investigation. As previously indicated, we endeavored to incorporate a comprehensive array of morphological parameters to ensure the robustness of our findings.
As the scope of parameters considered expands, shifts in the relative importance assigned to each parameter are anticipated. Furthermore, increasing the size of the dataset can enhance the reliability of the results. Among the parameters of significance, the size ratio emerges as a recurrent focal point, underscoring its inherent importance in assessing the risk of rupture. Once more, we underscore the significance of the recall score, given the sensitivity inherent in medical data. It is noteworthy that our study achieves an outstanding recall score, a metric that is unfortunately absent from prior studies, thus limiting direct comparison.
- What Is Machine Learning? | How It Works, Techniques ... [Last Updated On: September 5th, 2019] [Originally Added On: September 5th, 2019]
- Start Here with Machine Learning [Last Updated On: September 22nd, 2019] [Originally Added On: September 22nd, 2019]
- What is Machine Learning? | Emerj [Last Updated On: October 1st, 2019] [Originally Added On: October 1st, 2019]
- Microsoft Azure Machine Learning Studio [Last Updated On: October 1st, 2019] [Originally Added On: October 1st, 2019]
- Machine Learning Basics | What Is Machine Learning? | Introduction To Machine Learning | Simplilearn [Last Updated On: October 1st, 2019] [Originally Added On: October 1st, 2019]
- What is Machine Learning? A definition - Expert System [Last Updated On: October 2nd, 2019] [Originally Added On: October 2nd, 2019]
- Machine Learning | Stanford Online [Last Updated On: October 2nd, 2019] [Originally Added On: October 2nd, 2019]
- How to Learn Machine Learning, The Self-Starter Way [Last Updated On: October 17th, 2019] [Originally Added On: October 17th, 2019]
- definition - What is machine learning? - Stack Overflow [Last Updated On: November 3rd, 2019] [Originally Added On: November 3rd, 2019]
- Artificial Intelligence vs. Machine Learning vs. Deep ... [Last Updated On: November 3rd, 2019] [Originally Added On: November 3rd, 2019]
- Machine Learning in R for beginners (article) - DataCamp [Last Updated On: November 3rd, 2019] [Originally Added On: November 3rd, 2019]
- Machine Learning | Udacity [Last Updated On: November 3rd, 2019] [Originally Added On: November 3rd, 2019]
- Machine Learning Artificial Intelligence | McAfee [Last Updated On: November 3rd, 2019] [Originally Added On: November 3rd, 2019]
- Machine Learning [Last Updated On: November 3rd, 2019] [Originally Added On: November 3rd, 2019]
- AI-based ML algorithms could increase detection of undiagnosed AF - Cardiac Rhythm News [Last Updated On: November 19th, 2019] [Originally Added On: November 19th, 2019]
- The Cerebras CS-1 computes deep learning AI problems by being bigger, bigger, and bigger than any other chip - TechCrunch [Last Updated On: November 19th, 2019] [Originally Added On: November 19th, 2019]
- Can the planet really afford the exorbitant power demands of machine learning? - The Guardian [Last Updated On: November 19th, 2019] [Originally Added On: November 19th, 2019]
- New InfiniteIO Platform Reduces Latency and Accelerates Performance for Machine Learning, AI and Analytics - Business Wire [Last Updated On: November 19th, 2019] [Originally Added On: November 19th, 2019]
- How to Use Machine Learning to Drive Real Value - eWeek [Last Updated On: November 19th, 2019] [Originally Added On: November 19th, 2019]
- Machine Learning As A Service Market to Soar from End-use Industries and Push Revenues in the 2025 - Downey Magazine [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Rad AI Raises $4M to Automate Repetitive Tasks for Radiologists Through Machine Learning - - HIT Consultant [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Machine Learning Improves Performance of the Advanced Light Source - Machine Design [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Synthetic Data: The Diamonds of Machine Learning - TDWI [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- The transformation of healthcare with AI and machine learning - ITProPortal [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Workday talks machine learning and the future of human capital management - ZDNet [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Machine Learning with R, Third Edition - Free Sample Chapters - Neowin [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Verification In The Era Of Autonomous Driving, Artificial Intelligence And Machine Learning - SemiEngineering [Last Updated On: November 26th, 2019] [Originally Added On: November 26th, 2019]
- Podcast: How artificial intelligence, machine learning can help us realize the value of all that genetic data we're collecting - Genetic Literacy... [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- The Real Reason Your School Avoids Machine Learning - The Tech Edvocate [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- Siri, Tell Fido To Stop Barking: What's Machine Learning, And What's The Future Of It? - 90.5 WESA [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- Microsoft reveals how it caught mutating Monero mining malware with machine learning - The Next Web [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- The role of machine learning in IT service management - ITProPortal [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- Global Director of Tech Exploration Discusses Artificial Intelligence and Machine Learning at Anheuser-Busch InBev - Seton Hall University News &... [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- The 10 Hottest AI And Machine Learning Startups Of 2019 - CRN: The Biggest Tech News For Partners And The IT Channel [Last Updated On: November 28th, 2019] [Originally Added On: November 28th, 2019]
- Startup jobs of the week: Marketing Communications Specialist, Oracle Architect, Machine Learning Scientist - BetaKit [Last Updated On: November 30th, 2019] [Originally Added On: November 30th, 2019]
- Here's why machine learning is critical to success for banks of the future - Tech Wire Asia [Last Updated On: December 2nd, 2019] [Originally Added On: December 2nd, 2019]
- 3 questions to ask before investing in machine learning for pop health - Healthcare IT News [Last Updated On: December 8th, 2019] [Originally Added On: December 8th, 2019]
- Machine Learning Answers: If Caterpillar Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 8th, 2019] [Originally Added On: December 8th, 2019]
- Measuring Employee Engagement with A.I. and Machine Learning - Dice Insights [Last Updated On: December 8th, 2019] [Originally Added On: December 8th, 2019]
- Amazon Wants to Teach You Machine Learning Through Music? - Dice Insights [Last Updated On: December 8th, 2019] [Originally Added On: December 8th, 2019]
- Machine Learning Answers: If Nvidia Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 8th, 2019] [Originally Added On: December 8th, 2019]
- AI and machine learning platforms will start to challenge conventional thinking - CRN.in [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Machine Learning Answers: If Twitter Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Machine Learning Answers: If Seagate Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Machine Learning Answers: If BlackBerry Stock Drops 10% A Week, Whats The Chance Itll Recoup Its Losses In A Month? - Forbes [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Amazon Releases A New Tool To Improve Machine Learning Processes - Forbes [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Another free web course to gain machine-learning skills (thanks, Finland), NIST probes 'racist' face-recog and more - The Register [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Kubernetes and containers are the perfect fit for machine learning - JAXenter [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- TinyML as a Service and machine learning at the edge - Ericsson [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- AI and machine learning products - Cloud AI | Google Cloud [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Machine Learning | Blog | Microsoft Azure [Last Updated On: December 23rd, 2019] [Originally Added On: December 23rd, 2019]
- Machine Learning in 2019 Was About Balancing Privacy and Progress - ITPro Today [Last Updated On: December 25th, 2019] [Originally Added On: December 25th, 2019]
- CMSWire's Top 10 AI and Machine Learning Articles of 2019 - CMSWire [Last Updated On: December 25th, 2019] [Originally Added On: December 25th, 2019]
- Here's why digital marketing is as lucrative a career as data science and machine learning - Business Insider India [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- Dell's Latitude 9510 shakes up corporate laptops with 5G, machine learning, and thin bezels - PCWorld [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- Finally, a good use for AI: Machine-learning tool guesstimates how well your code will run on a CPU core - The Register [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- Cloud as the enabler of AI's competitive advantage - Finextra [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- Forget Machine Learning, Constraint Solvers are What the Enterprise Needs - - RTInsights [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- Informed decisions through machine learning will keep it afloat & going - Sea News [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- The Problem with Hiring Algorithms - Machine Learning Times - machine learning & data science news - The Predictive Analytics Times [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- New Program Supports Machine Learning in the Chemical Sciences and Engineering - Newswise [Last Updated On: January 13th, 2020] [Originally Added On: January 13th, 2020]
- AI-System Flags the Under-Vaccinated in Israel - PrecisionVaccinations [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- New Contest: Train All The Things - Hackaday [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- AFTAs 2019: Best New Technology Introduced Over the Last 12 MonthsAI, Machine Learning and AnalyticsActiveViam - www.waterstechnology.com [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Educate Yourself on Machine Learning at this Las Vegas Event - Small Business Trends [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Seton Hall Announces New Courses in Text Mining and Machine Learning - Seton Hall University News & Events [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Looking at the most significant benefits of machine learning for software testing - The Burn-In [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Leveraging AI and Machine Learning to Advance Interoperability in Healthcare - - HIT Consultant [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Adventures With Artificial Intelligence and Machine Learning - Toolbox [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Five Reasons to Go to Machine Learning Week 2020 - Machine Learning Times - machine learning & data science news - The Predictive Analytics Times [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Uncover the Possibilities of AI and Machine Learning With This Bundle - Interesting Engineering [Last Updated On: January 22nd, 2020] [Originally Added On: January 22nd, 2020]
- Learning that Targets Millennial and Generation Z - HR Exchange Network [Last Updated On: January 23rd, 2020] [Originally Added On: January 23rd, 2020]
- Red Hat Survey Shows Hybrid Cloud, AI and Machine Learning are the Focus of Enterprises - Computer Business Review [Last Updated On: January 23rd, 2020] [Originally Added On: January 23rd, 2020]
- Vectorspace AI Datasets are Now Available to Power Machine Learning (ML) and Artificial Intelligence (AI) Systems in Collaboration with Elastic -... [Last Updated On: January 23rd, 2020] [Originally Added On: January 23rd, 2020]
- What is Machine Learning? | Types of Machine Learning ... [Last Updated On: January 23rd, 2020] [Originally Added On: January 23rd, 2020]
- How Machine Learning Will Lead to Better Maps - Popular Mechanics [Last Updated On: January 30th, 2020] [Originally Added On: January 30th, 2020]
- Jenkins Creator Launches Startup To Speed Software Testing with Machine Learning -- ADTmag - ADT Magazine [Last Updated On: January 30th, 2020] [Originally Added On: January 30th, 2020]
- An Open Source Alternative to AWS SageMaker - Datanami [Last Updated On: January 30th, 2020] [Originally Added On: January 30th, 2020]
- Machine Learning Could Aid Diagnosis of Barrett's Esophagus, Avoid Invasive Testing - Medical Bag [Last Updated On: January 30th, 2020] [Originally Added On: January 30th, 2020]
- OReilly and Formulatedby Unveil the Smart Cities & Mobility Ecosystems Conference - Yahoo Finance [Last Updated On: January 30th, 2020] [Originally Added On: January 30th, 2020]