Systematic optimization of prime editing for the efficient functional correction of CFTR F508del in human airway epithelial cells – Nature.com

Anzalone, A. V. et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149157 (2019).

Article CAS PubMed PubMed Central Google Scholar

Anzalone, A. V., Koblan, L. W. & Liu, D. R. Genome editing with CRISPRCas nucleases, base editors, transposases and prime editors. Nat. Biotechnol. 38, 824844 (2020).

Article CAS PubMed Google Scholar

Chen, P. J. & Liu, D. R. Prime editing for precise and highly versatile genome manipulation. Nat. Rev. Genet. 24, 161177 (2023).

Article CAS PubMed Google Scholar

Newby, G. A. & Liu, D. R. In vivo somatic cell base editing and prime editing. Mol. Ther. 29, 31073124 (2021).

Article CAS PubMed PubMed Central Google Scholar

Davis, J. R. et al. Efficient prime editing in mouse brain, liver and heart with dual AAVs. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01758-z (2023).

Liu, Y. et al. Efficient generation of mouse models with the prime editing system. Cell Discov. 6, 27 (2020).

Article CAS PubMed PubMed Central Google Scholar

Schene, I. F. et al. Prime editing for functional repair in patient-derived disease models. Nat. Commun. 11, 5352 (2020).

Article CAS PubMed PubMed Central Google Scholar

Geurts, M. H. et al. Evaluating CRISPR-based prime editing for cancer modeling and CFTR repair in organoids. Life Sci. Alliance 4, e202000940 (2021).

Article CAS PubMed PubMed Central Google Scholar

Park, S.-J. et al. Targeted mutagenesis in mouse cells and embryos using an enhanced prime editor. Genome Biol. 22, 170 (2021).

Article PubMed PubMed Central Google Scholar

Gao, P. et al. Prime editing in mice reveals the essentiality of a single base in driving tissue-specific gene expression. Genome Biol. 22, 83 (2021).

Article CAS PubMed PubMed Central Google Scholar

Lin, J. et al. Modeling a cataract disorder in mice with prime editing. Mol. Ther. Nucleic Acids 25, 494501 (2021).

Article CAS PubMed PubMed Central Google Scholar

Habib, O., Habib, G., Hwang, G.-H. & Bae, S. Comprehensive analysis of prime editing outcomes in human embryonic stem cells. Nucleic Acids Res. 50, 11871197 (2022).

Article CAS PubMed PubMed Central Google Scholar

Gao, R. et al. Genomic and transcriptomic analyses of prime editing guide RNAindependent off-target effects by prime editors. CRISPR J. 5, 276293 (2022).

Article CAS PubMed Google Scholar

Liang, S.-Q. et al. Genome-wide profiling of prime editor off-target sites in vitro and in vivo using PE-tag. Nat. Methods 20, 898907 (2023).

Article CAS PubMed Google Scholar

Fiumara, M. et al. Genotoxic effects of base and prime editing in human hematopoietic stem cells. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01915-4 (2023).

Jin, S. et al. Genome-wide specificity of prime editors in plants. Nat. Biotechnol. 39, 12921299 (2021).

Article CAS PubMed Google Scholar

Kim, D. Y., Moon, S. B., Ko, J.-H., Kim, Y.-S. & Kim, D. Unbiased investigation of specificities of prime editing systems in human cells. Nucleic Acids Res. 48, 1057610589 (2020).

Article CAS PubMed PubMed Central Google Scholar

Rees, H. A. & Liu, D. R. Base editing: precision chemistry on the genome and transcriptome of living cells. Nat. Rev. Genet. 19, 770788 (2018).

Article CAS PubMed PubMed Central Google Scholar

Kosicki, M., Tomberg, K. & Bradley, A. Repair of double-strand breaks induced by CRISPRCas9 leads to large deletions and complex rearrangements. Nat. Biotechnol. 36, 765771 (2018).

Article CAS PubMed PubMed Central Google Scholar

Song, Y. et al. Large-fragment deletions induced by Cas9 cleavage while not in the BEs system. Mol. Ther. Nucleic Acids 21, 523526 (2020).

Article CAS PubMed PubMed Central Google Scholar

Haapaniemi, E., Botla, S., Persson, J., Schmierer, B. & Taipale, J. CRISPRCas9 genome editing induces a p53-mediated DNA damage response. Nat. Med. 24, 927930 (2018).

Article CAS PubMed Google Scholar

Enache, O. M. et al. Cas9 activates the p53 pathway and selects for p53-inactivating mutations. Nat. Genet. 52, 662668 (2020).

Article CAS PubMed PubMed Central Google Scholar

Ihry, R. J. et al. p53 inhibits CRISPRCas9 engineering in human pluripotent stem cells. Nat. Med. 24, 939946 (2018).

Article CAS PubMed Google Scholar

Tao, J., Wang, Q., Mendez-Dorantes, C., Burns, K. H. & Chiarle, R. Frequency and mechanisms of LINE-1 retrotransposon insertions at CRISPR/Cas9 sites. Nat. Commun. 13, 3685 (2022).

Article CAS PubMed PubMed Central Google Scholar

Alanis-Lobato, G. et al. Frequent loss of heterozygosity in CRISPR-Cas9edited early human embryos. Proc. Natl Acad. Sci. USA 118, e2004832117 (2021).

Article CAS PubMed PubMed Central Google Scholar

Zuccaro, M. V. et al. Allele-specific chromosome removal after Cas9 cleavage in human embryos. Cell 183, 16501664.e15 (2020).

Article CAS PubMed Google Scholar

Leibowitz, M. L. et al. Chromothripsis as an on-target consequence of CRISPRCas9 genome editing. Nat. Genet. 53, 895905 (2021).

Article CAS PubMed PubMed Central Google Scholar

Cullot, G. et al. CRISPR-Cas9 genome editing induces megabase-scale chromosomal truncations. Nat. Commun. 10, 1136 (2019).

Article PubMed PubMed Central Google Scholar

She, K. et al. Dual-AAV split prime editor corrects the mutation and phenotype in mice with inherited retinal degeneration. Sig. Transduct. Target Ther. 8, 112 (2023).

Article CAS Google Scholar

Everette, K. A. et al. Ex vivo prime editing of patient haematopoietic stem cells rescues sickle-cell disease phenotypes after engraftment in mice. Nat. Biomed. Eng. 7, 616628 (2023).

Article CAS PubMed PubMed Central Google Scholar

Li, C. et al. In vivo HSC prime editing rescues sickle cell disease in a mouse model. Blood https://doi.org/10.1182/blood.2022018252 (2023).

Zhi, S. et al. Dual-AAV delivering split prime editor system for in vivo genome editing. Mol.Ther. 30, 283294 (2022).

Article CAS PubMed Google Scholar

Jang, H. et al. Application of prime editing to the correction of mutations and phenotypes in adult mice with liver and eye diseases. Nat. Biomed. Eng. 6, 181194 (2022).

Article CAS PubMed Google Scholar

Doman, J. L. et al. Phage-assisted evolution and protein engineering yield compact, efficient prime editors. Cell 186, 39834002.e26 (2023).

Article CAS PubMed PubMed Central Google Scholar

Liu, P. et al. Improved prime editors enable pathogenic allele correction and cancer modelling in adult mice. Nat. Commun. 12, 2121 (2021).

Article CAS PubMed PubMed Central Google Scholar

Zheng, C. et al. A flexible split prime editor using truncated reverse transcriptase improves dual-AAV delivery in mouse liver. Mol. Ther. https://doi.org/10.1016/j.ymthe.2022.01.005 (2022).

Bck, D. et al. In vivo prime editing of a metabolic liver disease in mice. Sci. Transl. Med. 14, eabl9238 (2022).

Article PubMed PubMed Central Google Scholar

Gao, Z. et al. A truncated reverse transcriptase enhances prime editing by split AAV vectors. Mol. Ther. 30, 29422951 (2022).

Article CAS PubMed PubMed Central Google Scholar

Duffield, J. et al. Prime editing precisely corrects prevalent pathogenic mutations causing glycogen storage disease type 1b (GSD1b). Paper presented at the 30th Annual Congress of the European Society of Gene and Cell Therapy, Brussels, 27 October 2023 (2023).

Nelson, J. W. et al. Engineered pegRNAs improve prime editing efficiency. Nat. Biotechnol. https://doi.org/10.1038/s41587-021-01039-7 (2021).

Chen, P. J. et al. Enhanced prime editing systems by manipulating cellular determinants of editing outcomes. Cell 184, 56355652.e29 (2021).

Article CAS PubMed PubMed Central Google Scholar

Marshall, B. et al. Cystic Fibrosis Foundation Patient Registry: 2021 Annual Data Report (Cystic Fibrosis Foundation, 2022).

Google Scholar

Guo, J., Garratt, A. & Hill, A. Worldwide rates of diagnosis and effective treatment for cystic fibrosis. J. Cyst. Fibros. 21, 456462 (2022).

Article PubMed Google Scholar

OSullivan, B. P. & Freedman, S. D. Cystic fibrosis. Lancet 373, 18911904 (2009).

Article PubMed Google Scholar

Elborn, J. S. Cystic fibrosis. Lancet 388, 25192531 (2016).

Article CAS PubMed Google Scholar

Sanders, D. B. & Fink, A. K. Background and epidemiology. Pediatr. Clin. North Am. 63, 567584 (2016).

Article PubMed PubMed Central Google Scholar

Rowe, S. M., Miller, S. & Sorscher, E. J. Cystic fibrosis. N. Engl. J. Med. 352, 19922001 (2005).

Article CAS PubMed Google Scholar

Quinton, P. M. Cystic fibrosis: impaired bicarbonate secretion and mucoviscidosis. Lancet 372, 415417 (2008).

Article CAS PubMed Google Scholar

Castellani, C. CFTR2: how will it help care? Paediatr. Respir. Rev. 14, 25 (2013).

Article PubMed Google Scholar

Dalemans, W. et al. Altered chloride ion channel kinetics associated with the F508 cystic fibrosis mutation. Nature 354, 526528 (1991).

Article CAS PubMed Google Scholar

Lukacs, G. L. et al. The delta F508 mutation decreases the stability of cystic fibrosis transmembrane conductance regulator in the plasma membrane. Determination of functional half-lives on transfected cells. J. Biol. Chem. 268, 2159221598 (1993).

Article CAS PubMed Google Scholar

Cheng, S. H. et al. Defective intracellular transport and processing of CFTR is the molecular basis of most cystic fibrosis. Cell 63, 827834 (1990).

Article CAS PubMed Google Scholar

Denning, G. M. et al. Processing of mutant cystic fibrosis transmembrane conductance regulator is temperature-sensitive. Nature 358, 761764 (1992).

Article CAS PubMed Google Scholar

View original post here:

Systematic optimization of prime editing for the efficient functional correction of CFTR F508del in human airway epithelial cells - Nature.com

Related Posts

Comments are closed.